{"title":"使用无监督多元回归估计的小流域尺度上空间密集土壤水分模式的数据相关不确定性的量化","authors":"H. Paasche, Ingmar Schröter","doi":"10.1002/vzj2.20258","DOIUrl":null,"url":null,"abstract":"Multiple regression analysis is a valuable method to reduce information gaps in a sparse soil moisture data set by fusing its information content with those of densely mapped data sets. Regression analysis utilizing uncertain data results in an indeterminate regression model and indeterminate soil moisture predictions when applying the regression model. We employ an unsupervised multiple regression approaches, taking optimally located sparse soil moisture measurements directly as coefficients in a linear regression model. We propagate data uncertainties into our probabilistic soil moisture estimation results by embedding the regression in a Monte Carlo approach. The computed uncertainty defines the quantitative limit for information retrieval from the resultant ensemble of soil moisture maps. This raises doubts on the true presence of some prominent channel‐like features of increased soil moisture that are clearly visible in a previously and deterministically derived soil moisture map ignoring the presence of data uncertainty. The approach followed in this work is computationally simple and could be applied routinely to databases of similar size. Insufficient uncertainty communication by the data provider became the biggest obstacle in our efforts and led us to the insight that the geoscientific community may need to revise their standards with regard to uncertainty communication related to measured and processed data.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantification of data‐related uncertainty of spatially dense soil moisture patterns on the small catchment scale estimated using unsupervised multiple regression\",\"authors\":\"H. Paasche, Ingmar Schröter\",\"doi\":\"10.1002/vzj2.20258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple regression analysis is a valuable method to reduce information gaps in a sparse soil moisture data set by fusing its information content with those of densely mapped data sets. Regression analysis utilizing uncertain data results in an indeterminate regression model and indeterminate soil moisture predictions when applying the regression model. We employ an unsupervised multiple regression approaches, taking optimally located sparse soil moisture measurements directly as coefficients in a linear regression model. We propagate data uncertainties into our probabilistic soil moisture estimation results by embedding the regression in a Monte Carlo approach. The computed uncertainty defines the quantitative limit for information retrieval from the resultant ensemble of soil moisture maps. This raises doubts on the true presence of some prominent channel‐like features of increased soil moisture that are clearly visible in a previously and deterministically derived soil moisture map ignoring the presence of data uncertainty. The approach followed in this work is computationally simple and could be applied routinely to databases of similar size. Insufficient uncertainty communication by the data provider became the biggest obstacle in our efforts and led us to the insight that the geoscientific community may need to revise their standards with regard to uncertainty communication related to measured and processed data.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20258\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20258","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantification of data‐related uncertainty of spatially dense soil moisture patterns on the small catchment scale estimated using unsupervised multiple regression
Multiple regression analysis is a valuable method to reduce information gaps in a sparse soil moisture data set by fusing its information content with those of densely mapped data sets. Regression analysis utilizing uncertain data results in an indeterminate regression model and indeterminate soil moisture predictions when applying the regression model. We employ an unsupervised multiple regression approaches, taking optimally located sparse soil moisture measurements directly as coefficients in a linear regression model. We propagate data uncertainties into our probabilistic soil moisture estimation results by embedding the regression in a Monte Carlo approach. The computed uncertainty defines the quantitative limit for information retrieval from the resultant ensemble of soil moisture maps. This raises doubts on the true presence of some prominent channel‐like features of increased soil moisture that are clearly visible in a previously and deterministically derived soil moisture map ignoring the presence of data uncertainty. The approach followed in this work is computationally simple and could be applied routinely to databases of similar size. Insufficient uncertainty communication by the data provider became the biggest obstacle in our efforts and led us to the insight that the geoscientific community may need to revise their standards with regard to uncertainty communication related to measured and processed data.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.