Jianhua Chen, Ying Ren, Wenlai Huang, Lin Zhang, Jinghai Li
{"title":"中尺度体系中的多级中尺度复杂度:化学和生物化学工程中的挑战。","authors":"Jianhua Chen, Ying Ren, Wenlai Huang, Lin Zhang, Jinghai Li","doi":"10.1146/annurev-chembioeng-092220-115031","DOIUrl":null,"url":null,"abstract":"This review discusses the complex behaviors in diverse chemical and biochemical systems to elucidate their commonalities and thus help develop a mesoscience methodology to address the complexities in even broader topics. This could possibly build a new scientific paradigm for different disciplines and could meanwhile provide effective tools to tackle the big challenges in various fields, thus paving a path toward combining the paradigm shift in science with the breakthrough in technique developments. Starting with our relatively fruitful understanding of chemical systems, the discussion focuses on the relatively pristine but very intriguing biochemical systems. It is recognized that diverse complexities are multilevel in nature, with each level being multiscale and the complexity emerging always at mesoscales in mesoregimes. Relevant advances in theoretical understandings and mathematical tools are summarized as well based on case studies, and the convergence between physics and mathematics is highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multilevel Mesoscale Complexities in Mesoregimes: Challenges in Chemical and Biochemical Engineering.\",\"authors\":\"Jianhua Chen, Ying Ren, Wenlai Huang, Lin Zhang, Jinghai Li\",\"doi\":\"10.1146/annurev-chembioeng-092220-115031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review discusses the complex behaviors in diverse chemical and biochemical systems to elucidate their commonalities and thus help develop a mesoscience methodology to address the complexities in even broader topics. This could possibly build a new scientific paradigm for different disciplines and could meanwhile provide effective tools to tackle the big challenges in various fields, thus paving a path toward combining the paradigm shift in science with the breakthrough in technique developments. Starting with our relatively fruitful understanding of chemical systems, the discussion focuses on the relatively pristine but very intriguing biochemical systems. It is recognized that diverse complexities are multilevel in nature, with each level being multiscale and the complexity emerging always at mesoscales in mesoregimes. Relevant advances in theoretical understandings and mathematical tools are summarized as well based on case studies, and the convergence between physics and mathematics is highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-092220-115031\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-092220-115031","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Multilevel Mesoscale Complexities in Mesoregimes: Challenges in Chemical and Biochemical Engineering.
This review discusses the complex behaviors in diverse chemical and biochemical systems to elucidate their commonalities and thus help develop a mesoscience methodology to address the complexities in even broader topics. This could possibly build a new scientific paradigm for different disciplines and could meanwhile provide effective tools to tackle the big challenges in various fields, thus paving a path toward combining the paradigm shift in science with the breakthrough in technique developments. Starting with our relatively fruitful understanding of chemical systems, the discussion focuses on the relatively pristine but very intriguing biochemical systems. It is recognized that diverse complexities are multilevel in nature, with each level being multiscale and the complexity emerging always at mesoscales in mesoregimes. Relevant advances in theoretical understandings and mathematical tools are summarized as well based on case studies, and the convergence between physics and mathematics is highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.