MgFe2O4磁性催化剂在可见光照射下光催化降解刚果红染料

Q3 Environmental Science Environment and Natural Resources Journal Pub Date : 2023-06-23 DOI:10.32526/ennrj/21/20230002
F. Riyanti, ,. N. , Nurhidayah, W. Purwaningrum, N. Yuliasari, P. Hariani
{"title":"MgFe2O4磁性催化剂在可见光照射下光催化降解刚果红染料","authors":"F. Riyanti, ,. N. , Nurhidayah, W. Purwaningrum, N. Yuliasari, P. Hariani","doi":"10.32526/ennrj/21/20230002","DOIUrl":null,"url":null,"abstract":"In this study, MgFe2O4 was successfully synthesized through the coprecipitation method using the precursors Fe(NO3)3·9H2O and Mg(NO3)2·6H2O. The MgFe2O4 product was characterized using XRD, SEM-EDS, VSM, UV-DRS, and FTIR. The catalyst was used for the photocatalytic degradation of Congo red dye under visible light irradiation. The variables of the photocatalytic degradation included solution pH, Congo red concentration, H2O2 concentration, and irradiation time. The MgFe2O4 synthesized has magnetic properties, with a saturation magnetization value of 17.78 emu/g and a band gap of 1.88 eV. A degradation efficiency of 99.62% was achieved under specific conditions, including a Congo red concentration of 10 mg/L, a solution pH of 6, an H2O2 concentration of 2.5 mM, and an irradiation time of 180 min. The degradation efficiency without H2O2 was observed to be 83.45%. The photocatalytic degradation of Congo red followed the pseudo-first-order kinetics model with a rate constant (k) of 0.0167 min-1 and a half-life (t1/2) of 41.49 min. The total organic carbon (TOC) removal of 84.58% indicated that the mineralization of Congo red had occurred. The effectiveness of photocatalytic degradation decreased from 99.62% to 94.50% (<5%) after five cycles of photocatalytic degradation. The results demonstrated that MgFe2O4 has a high Congo red dye degradation efficiency, can be regenerated, and is readily separated from the solution using a permanent magnet.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MgFe2O4 Magnetic Catalyst for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution Under Visible Light Irradiation\",\"authors\":\"F. Riyanti, ,. N. , Nurhidayah, W. Purwaningrum, N. Yuliasari, P. Hariani\",\"doi\":\"10.32526/ennrj/21/20230002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, MgFe2O4 was successfully synthesized through the coprecipitation method using the precursors Fe(NO3)3·9H2O and Mg(NO3)2·6H2O. The MgFe2O4 product was characterized using XRD, SEM-EDS, VSM, UV-DRS, and FTIR. The catalyst was used for the photocatalytic degradation of Congo red dye under visible light irradiation. The variables of the photocatalytic degradation included solution pH, Congo red concentration, H2O2 concentration, and irradiation time. The MgFe2O4 synthesized has magnetic properties, with a saturation magnetization value of 17.78 emu/g and a band gap of 1.88 eV. A degradation efficiency of 99.62% was achieved under specific conditions, including a Congo red concentration of 10 mg/L, a solution pH of 6, an H2O2 concentration of 2.5 mM, and an irradiation time of 180 min. The degradation efficiency without H2O2 was observed to be 83.45%. The photocatalytic degradation of Congo red followed the pseudo-first-order kinetics model with a rate constant (k) of 0.0167 min-1 and a half-life (t1/2) of 41.49 min. The total organic carbon (TOC) removal of 84.58% indicated that the mineralization of Congo red had occurred. The effectiveness of photocatalytic degradation decreased from 99.62% to 94.50% (<5%) after five cycles of photocatalytic degradation. The results demonstrated that MgFe2O4 has a high Congo red dye degradation efficiency, can be regenerated, and is readily separated from the solution using a permanent magnet.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/21/20230002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/21/20230002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究以Fe(NO3)3·9H2O和Mg(NO3,2·6H2O为前驱体,采用共沉淀法成功合成了MgFe2O4。使用XRD、SEM-EDS、VSM、UV-DRS和FTIR对MgFe2O4产物进行了表征。用该催化剂在可见光照射下光催化降解刚果红染料。光催化降解的变量包括溶液pH、刚果红浓度、H2O2浓度和辐照时间。合成的MgFe2O4具有磁性,饱和磁化值为17.78mu/g,带隙为1.88eV。在特定条件下,包括刚果红浓度为10mg/L、溶液pH为6、H2O2浓度为2.5mM和辐照时间为180min,降解效率达到99.62%。在没有H2O2的情况下,光催化降解刚果红的效率为83.45%。刚果红的光催化降解遵循准一级动力学模型,速率常数(k)为0.0167min-1,半衰期(t1/2)为41.49min。总有机碳(TOC)去除率为84.58%,表明刚果红已发生矿化。经过5个周期的光催化降解,光催化降解效率从99.62%下降到94.50%(<5%)。结果表明,MgFe2O4具有高的刚果红染料降解效率,可以再生,并且使用永磁体很容易从溶液中分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MgFe2O4 Magnetic Catalyst for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution Under Visible Light Irradiation
In this study, MgFe2O4 was successfully synthesized through the coprecipitation method using the precursors Fe(NO3)3·9H2O and Mg(NO3)2·6H2O. The MgFe2O4 product was characterized using XRD, SEM-EDS, VSM, UV-DRS, and FTIR. The catalyst was used for the photocatalytic degradation of Congo red dye under visible light irradiation. The variables of the photocatalytic degradation included solution pH, Congo red concentration, H2O2 concentration, and irradiation time. The MgFe2O4 synthesized has magnetic properties, with a saturation magnetization value of 17.78 emu/g and a band gap of 1.88 eV. A degradation efficiency of 99.62% was achieved under specific conditions, including a Congo red concentration of 10 mg/L, a solution pH of 6, an H2O2 concentration of 2.5 mM, and an irradiation time of 180 min. The degradation efficiency without H2O2 was observed to be 83.45%. The photocatalytic degradation of Congo red followed the pseudo-first-order kinetics model with a rate constant (k) of 0.0167 min-1 and a half-life (t1/2) of 41.49 min. The total organic carbon (TOC) removal of 84.58% indicated that the mineralization of Congo red had occurred. The effectiveness of photocatalytic degradation decreased from 99.62% to 94.50% (<5%) after five cycles of photocatalytic degradation. The results demonstrated that MgFe2O4 has a high Congo red dye degradation efficiency, can be regenerated, and is readily separated from the solution using a permanent magnet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment and Natural Resources Journal
Environment and Natural Resources Journal Environmental Science-Environmental Science (all)
CiteScore
1.90
自引率
0.00%
发文量
49
审稿时长
8 weeks
期刊介绍: The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology
期刊最新文献
Life Cycle Assessment of Slaughtered Pork Production: A Case Study in Thailand Assessment of Health Risk from Exposure to Respirable Particulate Matter (RPM) among Motorcycle Taxi Drivers in Bangkok and Adjacent Provinces, Thailand Role of Correlation among Physical Factors in Probabilistic Simulation of Emissions of Volatile Organic Compounds from Floating Storage and Offloading Vent Stack Landscape Ecological Structures and Patterns for Green Space Conservation in Forest Monasteries in Northeast Thailand Optimization of Diclofenac Treatment in Synthetic Wastewater using Catalytic Ozonation with Calcium Peroxide as Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1