用于CO电还原的膜电极组件电解槽准两相界面上的定制水和氢氧化物传输

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2023-10-18 DOI:10.1016/j.joule.2023.08.008
Wenhao Ren , Wenchao Ma , Xile Hu
{"title":"用于CO电还原的膜电极组件电解槽准两相界面上的定制水和氢氧化物传输","authors":"Wenhao Ren ,&nbsp;Wenchao Ma ,&nbsp;Xile Hu","doi":"10.1016/j.joule.2023.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical CO reduction can potentially serve as an intermediate step for the efficient conversion of CO<sub>2</sub><span> to chemical fuels using renewable electricity. Although membrane electrode assembly (MEA) CO electrolyzers are industrially relevant, they currently suffer from a low energy efficiency (EE) due to a high-cell voltage (typically &gt;3 V at 1,000 mA cm</span><sup>−2</sup><span><span>). In this work, we reveal that water and hydroxide transport at the quasi-two-phase interface of the cathode limits the performance of MEA electrolyzers at high current densities. By developing a system that allows for sufficiently rapid interfacial mass transport, we obtain an </span>electrolyzer<span> that has a cell voltage of only 2.4 V at 1,000 mA cm</span></span><sup>−2</sup>. The electrolyzer has a Faradaic yield of more than 90% for C<sub>2+</sub> products and demonstrates a stability of more than 100 h.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"7 10","pages":"Pages 2349-2360"},"PeriodicalIF":38.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored water and hydroxide transport at a quasi-two-phase interface of membrane electrode assembly electrolyzer for CO electroreduction\",\"authors\":\"Wenhao Ren ,&nbsp;Wenchao Ma ,&nbsp;Xile Hu\",\"doi\":\"10.1016/j.joule.2023.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical CO reduction can potentially serve as an intermediate step for the efficient conversion of CO<sub>2</sub><span> to chemical fuels using renewable electricity. Although membrane electrode assembly (MEA) CO electrolyzers are industrially relevant, they currently suffer from a low energy efficiency (EE) due to a high-cell voltage (typically &gt;3 V at 1,000 mA cm</span><sup>−2</sup><span><span>). In this work, we reveal that water and hydroxide transport at the quasi-two-phase interface of the cathode limits the performance of MEA electrolyzers at high current densities. By developing a system that allows for sufficiently rapid interfacial mass transport, we obtain an </span>electrolyzer<span> that has a cell voltage of only 2.4 V at 1,000 mA cm</span></span><sup>−2</sup>. The electrolyzer has a Faradaic yield of more than 90% for C<sub>2+</sub> products and demonstrates a stability of more than 100 h.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"7 10\",\"pages\":\"Pages 2349-2360\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435123003537\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123003537","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学CO还原可以潜在地作为使用可再生电力将CO2有效转化为化学燃料的中间步骤。尽管膜电极组件(MEA)CO电解槽在工业上是相关的,但由于高电池电压(通常在1000mA cm−2时>;3V),它们目前的能效(EE)较低。在这项工作中,我们揭示了阴极准两相界面处的水和氢氧化物传输限制了MEA电解槽在高电流密度下的性能。通过开发一种允许足够快速的界面质量传输的系统,我们获得了一种在1000 mA cm−2下电池电压仅为2.4 V的电解槽。该电解槽对于C2+产物具有超过90%的法拉第产率,并且表现出超过100h的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailored water and hydroxide transport at a quasi-two-phase interface of membrane electrode assembly electrolyzer for CO electroreduction

Electrochemical CO reduction can potentially serve as an intermediate step for the efficient conversion of CO2 to chemical fuels using renewable electricity. Although membrane electrode assembly (MEA) CO electrolyzers are industrially relevant, they currently suffer from a low energy efficiency (EE) due to a high-cell voltage (typically >3 V at 1,000 mA cm−2). In this work, we reveal that water and hydroxide transport at the quasi-two-phase interface of the cathode limits the performance of MEA electrolyzers at high current densities. By developing a system that allows for sufficiently rapid interfacial mass transport, we obtain an electrolyzer that has a cell voltage of only 2.4 V at 1,000 mA cm−2. The electrolyzer has a Faradaic yield of more than 90% for C2+ products and demonstrates a stability of more than 100 h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules Strained heterojunction enables high-performance, fully textured perovskite/silicon tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1