锂金属电池中的固体电解质界面

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2023-10-18 DOI:10.1016/j.joule.2023.08.007
Ben Jagger , Mauro Pasta
{"title":"锂金属电池中的固体电解质界面","authors":"Ben Jagger ,&nbsp;Mauro Pasta","doi":"10.1016/j.joule.2023.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium metal batteries (LMBs) have recently received enormous interest as a higher energy density alternative to conventional lithium-ion batteries (LIBs). However, the commercialization of LMBs is currently impeded by poor cycle life due to inhomogeneous lithium deposition and active lithium loss. These are controlled by the solid electrolyte interphase (SEI) that forms on the anode surface, and there have been numerous reported strategies to produce SEIs with desired properties. However, these have not been sufficient to achieve the high cycling stabilities necessary for widespread LMB commercialization, requiring additional understanding of the SEI. In this perspective, we highlight recent progress in characterizing the SEI that forms in LMBs and outline the need to consider SEI nanostructure, transport, and mechanical properties together. We conclude by prescribing several key research fronts necessary for an accurate, systematic study of the SEI that will guide future electrolyte design and enable the development of safe and stable LMBs.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"7 10","pages":"Pages 2228-2244"},"PeriodicalIF":38.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Solid electrolyte interphases in lithium metal batteries\",\"authors\":\"Ben Jagger ,&nbsp;Mauro Pasta\",\"doi\":\"10.1016/j.joule.2023.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium metal batteries (LMBs) have recently received enormous interest as a higher energy density alternative to conventional lithium-ion batteries (LIBs). However, the commercialization of LMBs is currently impeded by poor cycle life due to inhomogeneous lithium deposition and active lithium loss. These are controlled by the solid electrolyte interphase (SEI) that forms on the anode surface, and there have been numerous reported strategies to produce SEIs with desired properties. However, these have not been sufficient to achieve the high cycling stabilities necessary for widespread LMB commercialization, requiring additional understanding of the SEI. In this perspective, we highlight recent progress in characterizing the SEI that forms in LMBs and outline the need to consider SEI nanostructure, transport, and mechanical properties together. We conclude by prescribing several key research fronts necessary for an accurate, systematic study of the SEI that will guide future electrolyte design and enable the development of safe and stable LMBs.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"7 10\",\"pages\":\"Pages 2228-2244\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435123003549\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123003549","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

锂金属电池(LMB)作为传统锂离子电池(LIBs)的更高能量密度替代品,最近受到了极大的兴趣。然而,由于不均匀的锂沉积和活性锂损失,LMB的商业化目前受到循环寿命差的阻碍。这些都是由阳极表面上形成的固体电解质界面(SEI)控制的,并且已经报道了许多生产具有所需性能的SEI的策略。然而,这些还不足以实现LMB广泛商业化所需的高循环稳定性,需要对SEI有更多的了解。从这个角度来看,我们强调了在表征LMB中形成的SEI方面的最新进展,并概述了同时考虑SEI纳米结构、传输和机械性能的必要性。最后,我们规定了对SEI进行准确、系统研究所需的几个关键研究前沿,这将指导未来的电解质设计,并使安全稳定的LMB的开发成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solid electrolyte interphases in lithium metal batteries

Lithium metal batteries (LMBs) have recently received enormous interest as a higher energy density alternative to conventional lithium-ion batteries (LIBs). However, the commercialization of LMBs is currently impeded by poor cycle life due to inhomogeneous lithium deposition and active lithium loss. These are controlled by the solid electrolyte interphase (SEI) that forms on the anode surface, and there have been numerous reported strategies to produce SEIs with desired properties. However, these have not been sufficient to achieve the high cycling stabilities necessary for widespread LMB commercialization, requiring additional understanding of the SEI. In this perspective, we highlight recent progress in characterizing the SEI that forms in LMBs and outline the need to consider SEI nanostructure, transport, and mechanical properties together. We conclude by prescribing several key research fronts necessary for an accurate, systematic study of the SEI that will guide future electrolyte design and enable the development of safe and stable LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules Strained heterojunction enables high-performance, fully textured perovskite/silicon tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1