{"title":"铜基基底上的过渡金属基水分解电催化剂:形态性质的整体作用。","authors":"Shankary Selvanathan, Pei Meng Woi, Vidhya Selvanathan, Mohammad Rezaul Karim, Kamaruzzaman Sopian, Md. Akhtaruzzaman","doi":"10.1002/tcr.202300228","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic water splitting is a promising alternative to produce high purity hydrogen gas as the green substitute for renewable energy. Thus, development of electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are vital to improve the efficiency of the water splitting process particularly based on transition metals which has been explored extensively to replace the highly active electrocatalytic activity of the iridium and ruthenium metals-based electrocatalysts. In situ growth of the material on a conductive substrate has also been proven to have the capability to lower down the overpotential value significantly. On top of that, the presence of substrate has given a massive impact on the morphology of the electrocatalyst. Among the conductive substrates that have been widely explored in the field of electrochemistry are the copper based substrates mainly copper foam, copper foil and copper mesh. Copper-based substrates possess unique properties such as low in cost, high tensile strength, excellent conductor of heat and electricity, ultraporous with well-integrated hierarchical structure and non-corrosive in nature. In this review, the recent advancements of HER and OER electrocatalysts grown on copper-based substrates has been critically discussed, focusing on their morphology, design, and preparation methods of the nanoarrays.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition Metals-Based Water Splitting Electrocatalysts on Copper-Based Substrates: The Integral Role of Morphological Properties\",\"authors\":\"Shankary Selvanathan, Pei Meng Woi, Vidhya Selvanathan, Mohammad Rezaul Karim, Kamaruzzaman Sopian, Md. Akhtaruzzaman\",\"doi\":\"10.1002/tcr.202300228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalytic water splitting is a promising alternative to produce high purity hydrogen gas as the green substitute for renewable energy. Thus, development of electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are vital to improve the efficiency of the water splitting process particularly based on transition metals which has been explored extensively to replace the highly active electrocatalytic activity of the iridium and ruthenium metals-based electrocatalysts. In situ growth of the material on a conductive substrate has also been proven to have the capability to lower down the overpotential value significantly. On top of that, the presence of substrate has given a massive impact on the morphology of the electrocatalyst. Among the conductive substrates that have been widely explored in the field of electrochemistry are the copper based substrates mainly copper foam, copper foil and copper mesh. Copper-based substrates possess unique properties such as low in cost, high tensile strength, excellent conductor of heat and electricity, ultraporous with well-integrated hierarchical structure and non-corrosive in nature. In this review, the recent advancements of HER and OER electrocatalysts grown on copper-based substrates has been critically discussed, focusing on their morphology, design, and preparation methods of the nanoarrays.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202300228\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202300228","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transition Metals-Based Water Splitting Electrocatalysts on Copper-Based Substrates: The Integral Role of Morphological Properties
Electrocatalytic water splitting is a promising alternative to produce high purity hydrogen gas as the green substitute for renewable energy. Thus, development of electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are vital to improve the efficiency of the water splitting process particularly based on transition metals which has been explored extensively to replace the highly active electrocatalytic activity of the iridium and ruthenium metals-based electrocatalysts. In situ growth of the material on a conductive substrate has also been proven to have the capability to lower down the overpotential value significantly. On top of that, the presence of substrate has given a massive impact on the morphology of the electrocatalyst. Among the conductive substrates that have been widely explored in the field of electrochemistry are the copper based substrates mainly copper foam, copper foil and copper mesh. Copper-based substrates possess unique properties such as low in cost, high tensile strength, excellent conductor of heat and electricity, ultraporous with well-integrated hierarchical structure and non-corrosive in nature. In this review, the recent advancements of HER and OER electrocatalysts grown on copper-based substrates has been critically discussed, focusing on their morphology, design, and preparation methods of the nanoarrays.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.