John Klumpp, Luiz Bertelli, Keith Eckerman, Matthew Nelson, Liam Wedell, Mina Deshler, Sara Brambilla, Michael Brown
{"title":"向公众介绍DEPDOSE,一种计算放射性气溶胶剂量系数的工具。","authors":"John Klumpp, Luiz Bertelli, Keith Eckerman, Matthew Nelson, Liam Wedell, Mina Deshler, Sara Brambilla, Michael Brown","doi":"10.1097/HP.0000000000001761","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>This paper presents DEPDOSE, an open-source computer application that combines the KDEP respiratory tract deposition fractions for inhaled aerosols with DC_PAK committed equivalent dose coefficients for a unit deposition in each region of the respiratory tract. DEPDOSE allows the user to rapidly produce tables of dose coefficients for workers and members of the public inhaling precisely defined, user-specified aerosols using the ICRP Publication 60 methodology. Combined with a plume dispersion modeling system, such as the Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System, this makes it possible to predict radiation doses downstream from an accidental or intentional release of radioactive materials. For this work, a radioactive plume was calculated to members of the public downstream from a dirty bomb in Chicago. DEPDOSE is published under an open source license, and can be downloaded at https://github.com/lanl/DEPDOSE .</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"117-121"},"PeriodicalIF":1.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing DEPDOSE, a Tool to Calculate Dose Coefficients to Members of the Public for Radioactive Aerosols.\",\"authors\":\"John Klumpp, Luiz Bertelli, Keith Eckerman, Matthew Nelson, Liam Wedell, Mina Deshler, Sara Brambilla, Michael Brown\",\"doi\":\"10.1097/HP.0000000000001761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>This paper presents DEPDOSE, an open-source computer application that combines the KDEP respiratory tract deposition fractions for inhaled aerosols with DC_PAK committed equivalent dose coefficients for a unit deposition in each region of the respiratory tract. DEPDOSE allows the user to rapidly produce tables of dose coefficients for workers and members of the public inhaling precisely defined, user-specified aerosols using the ICRP Publication 60 methodology. Combined with a plume dispersion modeling system, such as the Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System, this makes it possible to predict radiation doses downstream from an accidental or intentional release of radioactive materials. For this work, a radioactive plume was calculated to members of the public downstream from a dirty bomb in Chicago. DEPDOSE is published under an open source license, and can be downloaded at https://github.com/lanl/DEPDOSE .</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"117-121\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001761\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001761","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Introducing DEPDOSE, a Tool to Calculate Dose Coefficients to Members of the Public for Radioactive Aerosols.
Abstract: This paper presents DEPDOSE, an open-source computer application that combines the KDEP respiratory tract deposition fractions for inhaled aerosols with DC_PAK committed equivalent dose coefficients for a unit deposition in each region of the respiratory tract. DEPDOSE allows the user to rapidly produce tables of dose coefficients for workers and members of the public inhaling precisely defined, user-specified aerosols using the ICRP Publication 60 methodology. Combined with a plume dispersion modeling system, such as the Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System, this makes it possible to predict radiation doses downstream from an accidental or intentional release of radioactive materials. For this work, a radioactive plume was calculated to members of the public downstream from a dirty bomb in Chicago. DEPDOSE is published under an open source license, and can be downloaded at https://github.com/lanl/DEPDOSE .
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.