自闭症谱系障碍中与维生素相关的生物学途径。

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neurotoxicity Research Pub Date : 2023-12-01 Epub Date: 2023-10-21 DOI:10.1007/s12640-023-00674-z
Darlan Gusso, Gustavo Ricardo Krupp Prauchner, Alessandra Schmitt Rieder, Angela T S Wyse
{"title":"自闭症谱系障碍中与维生素相关的生物学途径。","authors":"Darlan Gusso, Gustavo Ricardo Krupp Prauchner, Alessandra Schmitt Rieder, Angela T S Wyse","doi":"10.1007/s12640-023-00674-z","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is characterized by early-appearing social communication deficits, with genetic and environmental factors potentially playing a role in its etiology, which remains largely unknown. During pregnancy, certain deficiencies in critical nutrients are mainly associated with central nervous system impairment. The vitamin B9 (folate) is primarily related to one-carbon and methionine metabolism, participating in methyl donor generation. In addition, supplementation with folic acid (FA) is recommended by the World Health Organization (WHO) in the first three gestational months to prevent neural tube defects. Vitamin B12 is related to folate regeneration, converting it into an active form. Deficiencies in this vitamin have a negative impact on cognitive function and brain development since it is involved in myelin synthesis. Vitamin D is intimately associated with Ca<sup>2+</sup> levels, acting in bone development and calcium-dependent signaling. This vitamin is associated with ASD at several levels since it has a relation with ASD genes and oxidative stress environment. This review carries the recent literature about the role of folate, vitamin B12, and vitamin D in ASD. In addition, we discuss the possible impact of nutrient deficiency or hypersupplementation during fetal development. On the other hand, we explore the biases of vitamin supplementation studies such as the loss of participants in retrospective studies, as well as multiple variants that are not considered in the conclusion, like dietary intake or auto-medication during pregnancy. In this regard, we aim to contribute to the discussion about the role of vitamins in ASD currency, but also in pregnancy and fetal development as well. Furthermore, stress during pregnancy can be an ASD predisposition, with cortisol as a regulator. In this view, we propose that cortisol is the bridge of susceptibility between vitamin disorders and ASD prevalence.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":" ","pages":"730-740"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Pathways Associated with Vitamins in Autism Spectrum Disorder.\",\"authors\":\"Darlan Gusso, Gustavo Ricardo Krupp Prauchner, Alessandra Schmitt Rieder, Angela T S Wyse\",\"doi\":\"10.1007/s12640-023-00674-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism spectrum disorder (ASD) is characterized by early-appearing social communication deficits, with genetic and environmental factors potentially playing a role in its etiology, which remains largely unknown. During pregnancy, certain deficiencies in critical nutrients are mainly associated with central nervous system impairment. The vitamin B9 (folate) is primarily related to one-carbon and methionine metabolism, participating in methyl donor generation. In addition, supplementation with folic acid (FA) is recommended by the World Health Organization (WHO) in the first three gestational months to prevent neural tube defects. Vitamin B12 is related to folate regeneration, converting it into an active form. Deficiencies in this vitamin have a negative impact on cognitive function and brain development since it is involved in myelin synthesis. Vitamin D is intimately associated with Ca<sup>2+</sup> levels, acting in bone development and calcium-dependent signaling. This vitamin is associated with ASD at several levels since it has a relation with ASD genes and oxidative stress environment. This review carries the recent literature about the role of folate, vitamin B12, and vitamin D in ASD. In addition, we discuss the possible impact of nutrient deficiency or hypersupplementation during fetal development. On the other hand, we explore the biases of vitamin supplementation studies such as the loss of participants in retrospective studies, as well as multiple variants that are not considered in the conclusion, like dietary intake or auto-medication during pregnancy. In this regard, we aim to contribute to the discussion about the role of vitamins in ASD currency, but also in pregnancy and fetal development as well. Furthermore, stress during pregnancy can be an ASD predisposition, with cortisol as a regulator. In this view, we propose that cortisol is the bridge of susceptibility between vitamin disorders and ASD prevalence.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\" \",\"pages\":\"730-740\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-023-00674-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00674-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)的特征是早期出现的社会沟通缺陷,遗传和环境因素可能在其病因中发挥作用,但其病因在很大程度上尚不清楚。在怀孕期间,某些关键营养素的缺乏主要与中枢神经系统损伤有关。维生素B9(叶酸)主要与单碳和蛋氨酸代谢有关,参与甲基供体的生成。此外,世界卫生组织(世界卫生组织)建议在妊娠头三个月补充叶酸(FA),以预防神经管缺陷。维生素B12与叶酸的再生有关,并将其转化为活性形式。这种维生素的缺乏会对认知功能和大脑发育产生负面影响,因为它参与髓鞘的合成。维生素D与Ca2+水平密切相关,参与骨骼发育和钙依赖性信号传导。这种维生素在几个层面上与ASD有关,因为它与ASD基因和氧化应激环境有关。这篇综述载有最近关于叶酸、维生素B12和维生素D在ASD中的作用的文献。此外,我们还讨论了在胎儿发育过程中营养缺乏或补充过多的可能影响。另一方面,我们探讨了维生素补充研究的偏差,如回顾性研究中参与者的减少,以及结论中未考虑的多种变体,如饮食摄入或妊娠期间自行用药。在这方面,我们的目的是为讨论维生素在ASD货币中的作用,以及在妊娠和胎儿发育中的作用做出贡献。此外,怀孕期间的压力可能是ASD的易感性,皮质醇是一种调节因子。在这种观点下,我们认为皮质醇是维生素障碍和ASD患病率之间易感性的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biological Pathways Associated with Vitamins in Autism Spectrum Disorder.

Autism spectrum disorder (ASD) is characterized by early-appearing social communication deficits, with genetic and environmental factors potentially playing a role in its etiology, which remains largely unknown. During pregnancy, certain deficiencies in critical nutrients are mainly associated with central nervous system impairment. The vitamin B9 (folate) is primarily related to one-carbon and methionine metabolism, participating in methyl donor generation. In addition, supplementation with folic acid (FA) is recommended by the World Health Organization (WHO) in the first three gestational months to prevent neural tube defects. Vitamin B12 is related to folate regeneration, converting it into an active form. Deficiencies in this vitamin have a negative impact on cognitive function and brain development since it is involved in myelin synthesis. Vitamin D is intimately associated with Ca2+ levels, acting in bone development and calcium-dependent signaling. This vitamin is associated with ASD at several levels since it has a relation with ASD genes and oxidative stress environment. This review carries the recent literature about the role of folate, vitamin B12, and vitamin D in ASD. In addition, we discuss the possible impact of nutrient deficiency or hypersupplementation during fetal development. On the other hand, we explore the biases of vitamin supplementation studies such as the loss of participants in retrospective studies, as well as multiple variants that are not considered in the conclusion, like dietary intake or auto-medication during pregnancy. In this regard, we aim to contribute to the discussion about the role of vitamins in ASD currency, but also in pregnancy and fetal development as well. Furthermore, stress during pregnancy can be an ASD predisposition, with cortisol as a regulator. In this view, we propose that cortisol is the bridge of susceptibility between vitamin disorders and ASD prevalence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
期刊最新文献
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1