Kai Liu , Qingqing Li , Anthony L. Andrady , Xiaohui Wang , Yinan He , Daoji Li
{"title":"在特定场景暴露下,低估了基于活动的微塑料摄入量","authors":"Kai Liu , Qingqing Li , Anthony L. Andrady , Xiaohui Wang , Yinan He , Daoji Li","doi":"10.1016/j.ese.2023.100316","DOIUrl":null,"url":null,"abstract":"<div><p>Despite increasing alarms over the health impacts of microplastics (MPs) due to their detection in human organs and feces, precise exposure evaluations remain scarce. To comprehend their risks, there is a distinct need to prioritize quantitive estimates in MP exposome, particularly at the environmentally-realistic level. Here we used a method rooted in real-world MP measurements and activity patterns to determine the daily intake of MPs through inhalation and from ground dust/soil ingestion. We found that nearly 80% of this intake comes from residential sectors, with activity intensity and behavioral types significantly affecting the human MP burden. The data showed a peak in MP exposure for those aged 18–64. When compared to dietary MP intake sources like seafood, salt, and water, we identified a previously underestimated exposure from inhalation and dust/soil ingestion, emphasizing the need for more realistic evaluations that incorporate activity factors. This discovery raises questions about the accuracy of past studies and underscores MP's potential health risks. Moreover, our time-based simulations revealed increased MP intake during the COVID-19 lockdown due to more surface dust ingestion, shedding light on how global health crises may inadvertently elevate MP exposure risks.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"18 ","pages":"Article 100316"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/78/da/main.PMC10583090.pdf","citationCount":"2","resultStr":"{\"title\":\"Underestimated activity-based microplastic intake under scenario-specific exposures\",\"authors\":\"Kai Liu , Qingqing Li , Anthony L. Andrady , Xiaohui Wang , Yinan He , Daoji Li\",\"doi\":\"10.1016/j.ese.2023.100316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite increasing alarms over the health impacts of microplastics (MPs) due to their detection in human organs and feces, precise exposure evaluations remain scarce. To comprehend their risks, there is a distinct need to prioritize quantitive estimates in MP exposome, particularly at the environmentally-realistic level. Here we used a method rooted in real-world MP measurements and activity patterns to determine the daily intake of MPs through inhalation and from ground dust/soil ingestion. We found that nearly 80% of this intake comes from residential sectors, with activity intensity and behavioral types significantly affecting the human MP burden. The data showed a peak in MP exposure for those aged 18–64. When compared to dietary MP intake sources like seafood, salt, and water, we identified a previously underestimated exposure from inhalation and dust/soil ingestion, emphasizing the need for more realistic evaluations that incorporate activity factors. This discovery raises questions about the accuracy of past studies and underscores MP's potential health risks. Moreover, our time-based simulations revealed increased MP intake during the COVID-19 lockdown due to more surface dust ingestion, shedding light on how global health crises may inadvertently elevate MP exposure risks.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"18 \",\"pages\":\"Article 100316\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/78/da/main.PMC10583090.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498423000819\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000819","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Underestimated activity-based microplastic intake under scenario-specific exposures
Despite increasing alarms over the health impacts of microplastics (MPs) due to their detection in human organs and feces, precise exposure evaluations remain scarce. To comprehend their risks, there is a distinct need to prioritize quantitive estimates in MP exposome, particularly at the environmentally-realistic level. Here we used a method rooted in real-world MP measurements and activity patterns to determine the daily intake of MPs through inhalation and from ground dust/soil ingestion. We found that nearly 80% of this intake comes from residential sectors, with activity intensity and behavioral types significantly affecting the human MP burden. The data showed a peak in MP exposure for those aged 18–64. When compared to dietary MP intake sources like seafood, salt, and water, we identified a previously underestimated exposure from inhalation and dust/soil ingestion, emphasizing the need for more realistic evaluations that incorporate activity factors. This discovery raises questions about the accuracy of past studies and underscores MP's potential health risks. Moreover, our time-based simulations revealed increased MP intake during the COVID-19 lockdown due to more surface dust ingestion, shedding light on how global health crises may inadvertently elevate MP exposure risks.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.