Giuseppe Vinci, Valérie Ventura, Matthew A Smith, Robert E Kass
{"title":"潜在图形模型中的调整正则化:应用于多神经元尖峰计数数据。","authors":"Giuseppe Vinci, Valérie Ventura, Matthew A Smith, Robert E Kass","doi":"10.1214/18-AOAS1190","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in contemporary neuroscience is to analyze data from large numbers of neurons recorded simultaneously across many experimental replications (trials), where the data are counts of neural firing events, and one of the basic problems is to characterize the dependence structure among such multivariate counts. Methods of estimating high-dimensional covariation based on <i>ℓ</i> <sub>1</sub>-regularization are most appropriate when there are a small number of relatively large partial correlations, but in neural data there are often large numbers of relatively small partial correlations. Furthermore, the variation across trials is often confounded by Poisson-like variation within trials. To overcome these problems we introduce a comprehensive methodology that imbeds a Gaussian graphical model into a hierarchical structure: the counts are assumed Poisson, conditionally on latent variables that follow a Gaussian graphical model, and the graphical model parameters, in turn, are assumed to depend on physiologically-motivated covariates, which can greatly improve correct detection of interactions (non-zero partial correlations). We develop a Bayesian approach to fitting this covariate-adjusted generalized graphical model and we demonstrate its success in simulation studies. We then apply it to data from an experiment on visual attention, where we assess functional interactions between neurons recorded from two brain areas.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"12 2","pages":"1068-1095"},"PeriodicalIF":1.3000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879176/pdf/nihms-1014977.pdf","citationCount":"0","resultStr":"{\"title\":\"ADJUSTED REGULARIZATION IN LATENT GRAPHICAL MODELS: APPLICATION TO MULTIPLE-NEURON SPIKE COUNT DATA.\",\"authors\":\"Giuseppe Vinci, Valérie Ventura, Matthew A Smith, Robert E Kass\",\"doi\":\"10.1214/18-AOAS1190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major challenge in contemporary neuroscience is to analyze data from large numbers of neurons recorded simultaneously across many experimental replications (trials), where the data are counts of neural firing events, and one of the basic problems is to characterize the dependence structure among such multivariate counts. Methods of estimating high-dimensional covariation based on <i>ℓ</i> <sub>1</sub>-regularization are most appropriate when there are a small number of relatively large partial correlations, but in neural data there are often large numbers of relatively small partial correlations. Furthermore, the variation across trials is often confounded by Poisson-like variation within trials. To overcome these problems we introduce a comprehensive methodology that imbeds a Gaussian graphical model into a hierarchical structure: the counts are assumed Poisson, conditionally on latent variables that follow a Gaussian graphical model, and the graphical model parameters, in turn, are assumed to depend on physiologically-motivated covariates, which can greatly improve correct detection of interactions (non-zero partial correlations). We develop a Bayesian approach to fitting this covariate-adjusted generalized graphical model and we demonstrate its success in simulation studies. We then apply it to data from an experiment on visual attention, where we assess functional interactions between neurons recorded from two brain areas.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"12 2\",\"pages\":\"1068-1095\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879176/pdf/nihms-1014977.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOAS1190\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOAS1190","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
ADJUSTED REGULARIZATION IN LATENT GRAPHICAL MODELS: APPLICATION TO MULTIPLE-NEURON SPIKE COUNT DATA.
A major challenge in contemporary neuroscience is to analyze data from large numbers of neurons recorded simultaneously across many experimental replications (trials), where the data are counts of neural firing events, and one of the basic problems is to characterize the dependence structure among such multivariate counts. Methods of estimating high-dimensional covariation based on ℓ1-regularization are most appropriate when there are a small number of relatively large partial correlations, but in neural data there are often large numbers of relatively small partial correlations. Furthermore, the variation across trials is often confounded by Poisson-like variation within trials. To overcome these problems we introduce a comprehensive methodology that imbeds a Gaussian graphical model into a hierarchical structure: the counts are assumed Poisson, conditionally on latent variables that follow a Gaussian graphical model, and the graphical model parameters, in turn, are assumed to depend on physiologically-motivated covariates, which can greatly improve correct detection of interactions (non-zero partial correlations). We develop a Bayesian approach to fitting this covariate-adjusted generalized graphical model and we demonstrate its success in simulation studies. We then apply it to data from an experiment on visual attention, where we assess functional interactions between neurons recorded from two brain areas.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.