揭开盐引起的锂损失的神秘面纱:锂金属电池电解质设计的通用程序。

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano-Micro Letters Pub Date : 2023-10-24 DOI:10.1007/s40820-023-01205-3
Zhenglu Zhu, Xiaohui Li, Xiaoqun Qi, Jie Ji, Yongsheng Ji, Ruining Jiang, Chaofan Liang, Dan Yang, Ze Yang, Long Qie, Yunhui Huang
{"title":"揭开盐引起的锂损失的神秘面纱:锂金属电池电解质设计的通用程序。","authors":"Zhenglu Zhu,&nbsp;Xiaohui Li,&nbsp;Xiaoqun Qi,&nbsp;Jie Ji,&nbsp;Yongsheng Ji,&nbsp;Ruining Jiang,&nbsp;Chaofan Liang,&nbsp;Dan Yang,&nbsp;Ze Yang,&nbsp;Long Qie,&nbsp;Yunhui Huang","doi":"10.1007/s40820-023-01205-3","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF<sub>6</sub>), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li<sup>+</sup> and “dead” Li) during cycling. It is found that the accumulation of both SEI Li<sup>+</sup> and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF<sub>6</sub> salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li<sup>+</sup> inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597960/pdf/","citationCount":"0","resultStr":"{\"title\":\"Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries\",\"authors\":\"Zhenglu Zhu,&nbsp;Xiaohui Li,&nbsp;Xiaoqun Qi,&nbsp;Jie Ji,&nbsp;Yongsheng Ji,&nbsp;Ruining Jiang,&nbsp;Chaofan Liang,&nbsp;Dan Yang,&nbsp;Ze Yang,&nbsp;Long Qie,&nbsp;Yunhui Huang\",\"doi\":\"10.1007/s40820-023-01205-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF<sub>6</sub>), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li<sup>+</sup> and “dead” Li) during cycling. It is found that the accumulation of both SEI Li<sup>+</sup> and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF<sub>6</sub> salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li<sup>+</sup> inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597960/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01205-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01205-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂(Li)金属电极在具有不同盐的电解质中显示出显著不同的可逆性。然而,目前尚不清楚盐类对李流失的影响。在此,以具有不同盐的电解质(例如,六氟磷酸锂(LiPF6)、二氟(草酸)硼酸锂(LiDFOB)和双(氟磺酰基)酰胺锂(LiFSI))为例,我们在循环过程中解耦了不可逆的Li损失(SEI-Li+和“死”Li)。研究发现,SEI-Li+和“死”Li的积累可能是锂金属在含LiPF6盐的电解质中不可逆的Li损失的原因。而对于含有LiDFOB和LiFSI盐的电解质,“死”Li的积累主导了Li的损失。我们还证明,硝酸锂和氟碳酸亚乙酯添加剂可以分别作为“死”Li和SEI-Li+抑制剂。受上述理解的启发,我们提出了一个通用的锂金属电池电解液设计程序:(i)解耦并找出不可逆锂损失的主要原因;(ii)添加相应的电解质添加剂。通过这种Li损失靶向策略,在含有1,2-二甲氧基乙烷、磷酸三乙酯和四氢呋喃溶剂的电解质中,Li的可逆性显著增强。我们的策略可能会将电解质设计的范围扩大到实用的LMB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries

Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li+ and “dead” Li) during cycling. It is found that the accumulation of both SEI Li+ and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF6 salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li+ inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
期刊最新文献
Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1