双背工作记忆任务的多项式处理树模型。

Computational brain & behavior Pub Date : 2022-09-01 Epub Date: 2022-06-07 DOI:10.1007/s42113-022-00138-1
Michael D Lee, Percy K Mistry, Vinod Menon
{"title":"双背工作记忆任务的多项式处理树模型。","authors":"Michael D Lee, Percy K Mistry, Vinod Menon","doi":"10.1007/s42113-022-00138-1","DOIUrl":null,"url":null,"abstract":"<p><p>The <math><mi>n</mi></math>-back task is a widely used behavioral task for measuring working memory and the ability to inhibit interfering information. We develop a novel model of the commonly used 2-back task using the cognitive psychometric framework provided by Multinomial Processing Trees. Our model involves three parameters: a memory parameter, corresponding to how well an individual encodes and updates sequence information about presented stimuli; a decision parameter corresponding to how well participants execute choices based on information stored in memory; and a base-rate parameter corresponding to bias for responding \"yes\" or \"no\". We test the parameter recovery properties of the model using existing 2-back experimental designs, and demonstrate the application of the model to two previous data sets: one from social psychology involving faces corresponding to different races (Stelter and Degner, <i>British Journal of Psychology</i> 109:777-798, 2018), and one from cognitive neuroscience involving more than 1000 participants from the Human Connectome Project (Van Essen et al., <i>Neuroimage</i> 80:62-79, 2013). We demonstrate that the model can be used to infer interpretable individual-level parameters. We develop a hierarchical extension of the model to test differences between stimulus conditions, comparing faces of different races, and comparing face to non-face stimuli. We also develop a multivariate regression extension to examine the relationship between the model parameters and individual performance on standardized cognitive measures including the List Sorting and Flanker tasks. We conclude by discussing how our model can be used to dissociate underlying cognitive processes such as encoding failures, inhibition failures, and binding failures.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"5 3","pages":"261-278"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593202/pdf/nihms-1890058.pdf","citationCount":"0","resultStr":"{\"title\":\"A Multinomial Processing Tree Model of the 2-back Working Memory Task.\",\"authors\":\"Michael D Lee, Percy K Mistry, Vinod Menon\",\"doi\":\"10.1007/s42113-022-00138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <math><mi>n</mi></math>-back task is a widely used behavioral task for measuring working memory and the ability to inhibit interfering information. We develop a novel model of the commonly used 2-back task using the cognitive psychometric framework provided by Multinomial Processing Trees. Our model involves three parameters: a memory parameter, corresponding to how well an individual encodes and updates sequence information about presented stimuli; a decision parameter corresponding to how well participants execute choices based on information stored in memory; and a base-rate parameter corresponding to bias for responding \\\"yes\\\" or \\\"no\\\". We test the parameter recovery properties of the model using existing 2-back experimental designs, and demonstrate the application of the model to two previous data sets: one from social psychology involving faces corresponding to different races (Stelter and Degner, <i>British Journal of Psychology</i> 109:777-798, 2018), and one from cognitive neuroscience involving more than 1000 participants from the Human Connectome Project (Van Essen et al., <i>Neuroimage</i> 80:62-79, 2013). We demonstrate that the model can be used to infer interpretable individual-level parameters. We develop a hierarchical extension of the model to test differences between stimulus conditions, comparing faces of different races, and comparing face to non-face stimuli. We also develop a multivariate regression extension to examine the relationship between the model parameters and individual performance on standardized cognitive measures including the List Sorting and Flanker tasks. We conclude by discussing how our model can be used to dissociate underlying cognitive processes such as encoding failures, inhibition failures, and binding failures.</p>\",\"PeriodicalId\":72660,\"journal\":{\"name\":\"Computational brain & behavior\",\"volume\":\"5 3\",\"pages\":\"261-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593202/pdf/nihms-1890058.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational brain & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42113-022-00138-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-022-00138-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

n-back任务是一种广泛使用的行为任务,用于测量工作记忆和抑制干扰信息的能力。我们利用多项式处理树提供的认知心理测量框架,开发了一个常用的双背任务的新模型。我们的模型包括三个参数:记忆参数,对应于个体对所呈现刺激的序列信息的编码和更新程度;决策参数,所述决策参数对应于参与者基于存储在存储器中的信息执行选择的程度;以及与用于响应“是”或“否”的偏置相对应的基本速率参数。我们使用现有的双背实验设计测试了该模型的参数恢复特性,并将该模型应用于之前的两个数据集:一个来自社会心理学,涉及不同种族的人脸(Stelter和Degner,《英国心理学杂志》109:777-77982018),一个来自认知神经科学,涉及人类连接体项目的1000多名参与者(Van Essen等人,Neuroimage 80:62-792013)。我们证明了该模型可以用来推断可解释的个体水平参数。我们开发了该模型的层次扩展,以测试刺激条件之间的差异,比较不同种族的面孔,并比较面孔和非面孔刺激。我们还开发了一个多元回归扩展,以检验模型参数与个体在标准化认知测量中的表现之间的关系,包括列表排序和Flanker任务。最后,我们讨论了如何使用我们的模型来分离潜在的认知过程,如编码失败、抑制失败和绑定失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multinomial Processing Tree Model of the 2-back Working Memory Task.

The n-back task is a widely used behavioral task for measuring working memory and the ability to inhibit interfering information. We develop a novel model of the commonly used 2-back task using the cognitive psychometric framework provided by Multinomial Processing Trees. Our model involves three parameters: a memory parameter, corresponding to how well an individual encodes and updates sequence information about presented stimuli; a decision parameter corresponding to how well participants execute choices based on information stored in memory; and a base-rate parameter corresponding to bias for responding "yes" or "no". We test the parameter recovery properties of the model using existing 2-back experimental designs, and demonstrate the application of the model to two previous data sets: one from social psychology involving faces corresponding to different races (Stelter and Degner, British Journal of Psychology 109:777-798, 2018), and one from cognitive neuroscience involving more than 1000 participants from the Human Connectome Project (Van Essen et al., Neuroimage 80:62-79, 2013). We demonstrate that the model can be used to infer interpretable individual-level parameters. We develop a hierarchical extension of the model to test differences between stimulus conditions, comparing faces of different races, and comparing face to non-face stimuli. We also develop a multivariate regression extension to examine the relationship between the model parameters and individual performance on standardized cognitive measures including the List Sorting and Flanker tasks. We conclude by discussing how our model can be used to dissociate underlying cognitive processes such as encoding failures, inhibition failures, and binding failures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Individual Variability in Neural Control Circuit Regulation Using Single-Subject fMRI Towards Dependent Race Models for the Stop-Signal Paradigm Modeling Time Cell Neuron-Level Dynamics Probabilistic Choice Induced by Strength of Preference An Extension and Clinical Application of the SIMPLE Model to the Free Recall of Repeated and Semantically Related Items
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1