Khalid Boussaine , Maria Taha , Cáinà Nìng , Alison Cartereau , Sabine Rakotobe , Lourdes Mateos-Hernandez , Emiliane Taillebois , Ladislav Šimo , Steeve H. Thany
{"title":"蓖麻硬蜱同神经节神经元的分离和电生理记录。","authors":"Khalid Boussaine , Maria Taha , Cáinà Nìng , Alison Cartereau , Sabine Rakotobe , Lourdes Mateos-Hernandez , Emiliane Taillebois , Ladislav Šimo , Steeve H. Thany","doi":"10.1016/j.vascn.2023.107473","DOIUrl":null,"url":null,"abstract":"<div><p>The central nervous system of hard ticks (<span><em>Ixodidae</em></span>) consists of a concentrated merged nerve mass known as the synganglion. Although knowledge of tick neurobiology has dramatically improved over the last two decades, this is the first time that isolation and electrophysiological recordings have been carried out on tick neurons from the synganglion. <em>Method</em><span><span>: We developed a simple protocol for synganglion neuron isolation and used a whole-cell patch clamp to measure ionic currents induced by acetylcholine, nicotine and </span>muscarine. Relatively large neurons (∼ 25 μm and ∼ 35 μm) were isolated and 1 mM acetylcholine was used to induce strong inward currents of −0.38 ± 0.1 nA and − 1.04 ± 0.1 nA, respectively, with the corresponding cell capacitances being at around 142 pF and 188 pF. In addition, successive application of 1 mM acetylcholine through ∼25 μm and ∼ 35 μm cells for increasing amounts of time resulted in a rapid reduction in current amplitudes. We also found that acetylcholine-evoked currents were associated with a reversible increase in intracellular calcium levels for each neuronal type. In contrast, 1 mM muscarine and nicotine induced a strong and non-reversible increase in intracellular calcium levels. This study serves as a proof of concept for the mechanical isolation of tick synganglion neurons followed by their electrophysiological recording. This approach will aid investigations into the pharmacological properties of tick neurons and provides the tools needed for the identification of drug-targeted sites and effective tick control measures.</span></p></div>","PeriodicalId":16767,"journal":{"name":"Journal of pharmacological and toxicological methods","volume":"124 ","pages":"Article 107473"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and electrophysiological recording of Ixodes ricinus synganglion neurons\",\"authors\":\"Khalid Boussaine , Maria Taha , Cáinà Nìng , Alison Cartereau , Sabine Rakotobe , Lourdes Mateos-Hernandez , Emiliane Taillebois , Ladislav Šimo , Steeve H. Thany\",\"doi\":\"10.1016/j.vascn.2023.107473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The central nervous system of hard ticks (<span><em>Ixodidae</em></span>) consists of a concentrated merged nerve mass known as the synganglion. Although knowledge of tick neurobiology has dramatically improved over the last two decades, this is the first time that isolation and electrophysiological recordings have been carried out on tick neurons from the synganglion. <em>Method</em><span><span>: We developed a simple protocol for synganglion neuron isolation and used a whole-cell patch clamp to measure ionic currents induced by acetylcholine, nicotine and </span>muscarine. Relatively large neurons (∼ 25 μm and ∼ 35 μm) were isolated and 1 mM acetylcholine was used to induce strong inward currents of −0.38 ± 0.1 nA and − 1.04 ± 0.1 nA, respectively, with the corresponding cell capacitances being at around 142 pF and 188 pF. In addition, successive application of 1 mM acetylcholine through ∼25 μm and ∼ 35 μm cells for increasing amounts of time resulted in a rapid reduction in current amplitudes. We also found that acetylcholine-evoked currents were associated with a reversible increase in intracellular calcium levels for each neuronal type. In contrast, 1 mM muscarine and nicotine induced a strong and non-reversible increase in intracellular calcium levels. This study serves as a proof of concept for the mechanical isolation of tick synganglion neurons followed by their electrophysiological recording. This approach will aid investigations into the pharmacological properties of tick neurons and provides the tools needed for the identification of drug-targeted sites and effective tick control measures.</span></p></div>\",\"PeriodicalId\":16767,\"journal\":{\"name\":\"Journal of pharmacological and toxicological methods\",\"volume\":\"124 \",\"pages\":\"Article 107473\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological and toxicological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1056871923002241\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological and toxicological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1056871923002241","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Isolation and electrophysiological recording of Ixodes ricinus synganglion neurons
The central nervous system of hard ticks (Ixodidae) consists of a concentrated merged nerve mass known as the synganglion. Although knowledge of tick neurobiology has dramatically improved over the last two decades, this is the first time that isolation and electrophysiological recordings have been carried out on tick neurons from the synganglion. Method: We developed a simple protocol for synganglion neuron isolation and used a whole-cell patch clamp to measure ionic currents induced by acetylcholine, nicotine and muscarine. Relatively large neurons (∼ 25 μm and ∼ 35 μm) were isolated and 1 mM acetylcholine was used to induce strong inward currents of −0.38 ± 0.1 nA and − 1.04 ± 0.1 nA, respectively, with the corresponding cell capacitances being at around 142 pF and 188 pF. In addition, successive application of 1 mM acetylcholine through ∼25 μm and ∼ 35 μm cells for increasing amounts of time resulted in a rapid reduction in current amplitudes. We also found that acetylcholine-evoked currents were associated with a reversible increase in intracellular calcium levels for each neuronal type. In contrast, 1 mM muscarine and nicotine induced a strong and non-reversible increase in intracellular calcium levels. This study serves as a proof of concept for the mechanical isolation of tick synganglion neurons followed by their electrophysiological recording. This approach will aid investigations into the pharmacological properties of tick neurons and provides the tools needed for the identification of drug-targeted sites and effective tick control measures.
期刊介绍:
Journal of Pharmacological and Toxicological Methods publishes original articles on current methods of investigation used in pharmacology and toxicology. Pharmacology and toxicology are defined in the broadest sense, referring to actions of drugs and chemicals on all living systems. With its international editorial board and noted contributors, Journal of Pharmacological and Toxicological Methods is the leading journal devoted exclusively to experimental procedures used by pharmacologists and toxicologists.