结构环境中鞭毛多态性依赖的细菌游泳运动性。

IF 1.6 Q4 BIOPHYSICS Biophysics and physicobiology Pub Date : 2023-05-30 eCollection Date: 2023-06-14 DOI:10.2142/biophysico.bppb-v20.0024
Yoshiaki Kinosita, Yoshiyuki Sowa
{"title":"结构环境中鞭毛多态性依赖的细菌游泳运动性。","authors":"Yoshiaki Kinosita,&nbsp;Yoshiyuki Sowa","doi":"10.2142/biophysico.bppb-v20.0024","DOIUrl":null,"url":null,"abstract":"<p><p>Most motile bacteria use supramolecular motility machinery called bacterial flagellum, which converts the chemical energy gained from ion flux into mechanical rotation. Bacterial cells sense their external environment through a two-component regulatory system consisting of a histidine kinase and response regulator. Combining these systems allows the cells to move toward favorable environments and away from their repellents. A representative example of flagellar motility is run-and-tumble swimming in <i>Escherichia coli</i>, where the counter-clockwise (CCW) rotation of a flagellar bundle propels the cell forward, and the clockwise (CW) rotation undergoes cell re-orientation (tumbling) upon switching the direction of flagellar motor rotation from CCW to CW. In this mini review, we focus on several types of chemotactic behaviors that respond to changes in flagellar shape and direction of rotation. Moreover, our single-cell analysis demonstrated back-and-forth swimming motility of an original <i>E. coli</i> strain. We propose that polymorphic flagellar changes are required to enhance bacterial movement in a structured environment as a colony spread on an agar plate.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"20 2","pages":"e200024"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/e2/20_e200024.PMC10587448.pdf","citationCount":"0","resultStr":"{\"title\":\"Flagellar polymorphism-dependent bacterial swimming motility in a structured environment.\",\"authors\":\"Yoshiaki Kinosita,&nbsp;Yoshiyuki Sowa\",\"doi\":\"10.2142/biophysico.bppb-v20.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most motile bacteria use supramolecular motility machinery called bacterial flagellum, which converts the chemical energy gained from ion flux into mechanical rotation. Bacterial cells sense their external environment through a two-component regulatory system consisting of a histidine kinase and response regulator. Combining these systems allows the cells to move toward favorable environments and away from their repellents. A representative example of flagellar motility is run-and-tumble swimming in <i>Escherichia coli</i>, where the counter-clockwise (CCW) rotation of a flagellar bundle propels the cell forward, and the clockwise (CW) rotation undergoes cell re-orientation (tumbling) upon switching the direction of flagellar motor rotation from CCW to CW. In this mini review, we focus on several types of chemotactic behaviors that respond to changes in flagellar shape and direction of rotation. Moreover, our single-cell analysis demonstrated back-and-forth swimming motility of an original <i>E. coli</i> strain. We propose that polymorphic flagellar changes are required to enhance bacterial movement in a structured environment as a colony spread on an agar plate.</p>\",\"PeriodicalId\":101323,\"journal\":{\"name\":\"Biophysics and physicobiology\",\"volume\":\"20 2\",\"pages\":\"e200024\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/e2/20_e200024.PMC10587448.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v20.0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v20.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

大多数运动细菌使用被称为细菌鞭毛的超分子运动机制,该机制将从离子通量中获得的化学能转化为机械旋转。细菌细胞通过组氨酸激酶和反应调节因子组成的双组分调节系统感知外部环境。结合这些系统可以使细胞向有利的环境移动,远离它们的排斥剂。鞭毛运动的一个代表性例子是在大肠杆菌中奔跑和翻滚游泳,其中鞭毛束的逆时针(CCW)旋转推动细胞向前,顺时针(CW)旋转在将鞭毛马达旋转方向从CCW切换到CW时经历细胞重新定向(翻滚)。在这篇小型综述中,我们重点介绍了几种对鞭毛形状和旋转方向变化做出反应的趋化行为。此外,我们的单细胞分析证明了原始大肠杆菌菌株的来回游动运动性。我们提出,当菌落在琼脂平板上扩散时,多态性鞭毛的变化是增强细菌在结构化环境中运动所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flagellar polymorphism-dependent bacterial swimming motility in a structured environment.

Most motile bacteria use supramolecular motility machinery called bacterial flagellum, which converts the chemical energy gained from ion flux into mechanical rotation. Bacterial cells sense their external environment through a two-component regulatory system consisting of a histidine kinase and response regulator. Combining these systems allows the cells to move toward favorable environments and away from their repellents. A representative example of flagellar motility is run-and-tumble swimming in Escherichia coli, where the counter-clockwise (CCW) rotation of a flagellar bundle propels the cell forward, and the clockwise (CW) rotation undergoes cell re-orientation (tumbling) upon switching the direction of flagellar motor rotation from CCW to CW. In this mini review, we focus on several types of chemotactic behaviors that respond to changes in flagellar shape and direction of rotation. Moreover, our single-cell analysis demonstrated back-and-forth swimming motility of an original E. coli strain. We propose that polymorphic flagellar changes are required to enhance bacterial movement in a structured environment as a colony spread on an agar plate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Chemical tongues as multipurpose bioanalytical tools for the characterization of complex biological samples. Unraveling the fastest myosin: Discovery history and structure-function relationships of algae Chara myosin XI. Internal structure of Mycoplasma mobile gliding machinery analyzed by negative staining electron tomography. Application of single-molecule analysis to singularity phenomenon of cells. X-ray diffraction recording from a small amount of fibrous protein materials oriented by a micro shear-flow cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1