Leanne Schmitt, Thomas Kirnbauer, Thomas Angerer, Rebecca Volkmann, Vladimir Roddatis, Richard Wirth, Sabine Klein
{"title":"泥盆纪火山伴生lahn - dill型铁矿的成因。第1部分:铁的活化和矿化方式","authors":"Leanne Schmitt, Thomas Kirnbauer, Thomas Angerer, Rebecca Volkmann, Vladimir Roddatis, Richard Wirth, Sabine Klein","doi":"10.1007/s00126-023-01218-3","DOIUrl":null,"url":null,"abstract":"<p>Fe-oxide deposits of the Lahn-Dill-type in the eastern Rhenish Massif comprise haematite and quartz with minor siderite, magnetite, and calcite. The deposits are located in the hanging wall of thick volcaniclastic rock sequences and mark the Middle to Late Devonian boundary. Varying ore types with accompanying footwall rocks were sampled from two formerly important ore deposits, the Fortuna mine (Lahn syncline) and the Briloner Eisenberg mine (East Sauerland anticline), in order to elucidate the interplay of processes leading to ore formation. Deposit geology, petrography, and whole-rock geochemistry suggest that the ores formed by iron mobilisation from deeply altered footwall volcaniclastic rocks, subsequent venting of a modified H<sub>2</sub>O-CO<sub>2</sub>-Fe-rich and H<sub>2</sub>S-poor fluid, and precipitation on the seafloor (sedimentary-type), or locally by metasomatic replacement of wall rocks (replacement-type). Petrographic analysis to the sub-micron scale revealed that the sedimentary-type ores most likely formed from a Fe-Si-rich gel and accompanying maturation. Early gel textures include the presence of spherules, aggregates, tubes, and filamentous stalks consisting of nanocrystalline haematite dispersed in a matrix of microcrystalline quartz. Local diagenetic Fe<sup>3+</sup> reduction within the gel is indicated by siderite replacement of haematite. Replacement-type ores formed due to a two-step process including coprecipitation of (precursor) haematite and carbonates and subsequent metasomatic replacement by haematite. These ore-forming processes took place during a time when several restricted shallow marine basins in the north-eastern Rheic Ocean were influenced by extensive volcanism and associated hydrothermal fluid flux. Examples of similar volcanic-associated Fe-oxide occurrences of Silurian to Carboniferous age can be categorised as being of Lahn-Dill-type ores as well.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genesis of Devonian volcanic-associated Lahn-Dill-type iron ores — part I: iron mobilisation and mineralisation style\",\"authors\":\"Leanne Schmitt, Thomas Kirnbauer, Thomas Angerer, Rebecca Volkmann, Vladimir Roddatis, Richard Wirth, Sabine Klein\",\"doi\":\"10.1007/s00126-023-01218-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fe-oxide deposits of the Lahn-Dill-type in the eastern Rhenish Massif comprise haematite and quartz with minor siderite, magnetite, and calcite. The deposits are located in the hanging wall of thick volcaniclastic rock sequences and mark the Middle to Late Devonian boundary. Varying ore types with accompanying footwall rocks were sampled from two formerly important ore deposits, the Fortuna mine (Lahn syncline) and the Briloner Eisenberg mine (East Sauerland anticline), in order to elucidate the interplay of processes leading to ore formation. Deposit geology, petrography, and whole-rock geochemistry suggest that the ores formed by iron mobilisation from deeply altered footwall volcaniclastic rocks, subsequent venting of a modified H<sub>2</sub>O-CO<sub>2</sub>-Fe-rich and H<sub>2</sub>S-poor fluid, and precipitation on the seafloor (sedimentary-type), or locally by metasomatic replacement of wall rocks (replacement-type). Petrographic analysis to the sub-micron scale revealed that the sedimentary-type ores most likely formed from a Fe-Si-rich gel and accompanying maturation. Early gel textures include the presence of spherules, aggregates, tubes, and filamentous stalks consisting of nanocrystalline haematite dispersed in a matrix of microcrystalline quartz. Local diagenetic Fe<sup>3+</sup> reduction within the gel is indicated by siderite replacement of haematite. Replacement-type ores formed due to a two-step process including coprecipitation of (precursor) haematite and carbonates and subsequent metasomatic replacement by haematite. These ore-forming processes took place during a time when several restricted shallow marine basins in the north-eastern Rheic Ocean were influenced by extensive volcanism and associated hydrothermal fluid flux. Examples of similar volcanic-associated Fe-oxide occurrences of Silurian to Carboniferous age can be categorised as being of Lahn-Dill-type ores as well.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-023-01218-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-023-01218-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Genesis of Devonian volcanic-associated Lahn-Dill-type iron ores — part I: iron mobilisation and mineralisation style
Fe-oxide deposits of the Lahn-Dill-type in the eastern Rhenish Massif comprise haematite and quartz with minor siderite, magnetite, and calcite. The deposits are located in the hanging wall of thick volcaniclastic rock sequences and mark the Middle to Late Devonian boundary. Varying ore types with accompanying footwall rocks were sampled from two formerly important ore deposits, the Fortuna mine (Lahn syncline) and the Briloner Eisenberg mine (East Sauerland anticline), in order to elucidate the interplay of processes leading to ore formation. Deposit geology, petrography, and whole-rock geochemistry suggest that the ores formed by iron mobilisation from deeply altered footwall volcaniclastic rocks, subsequent venting of a modified H2O-CO2-Fe-rich and H2S-poor fluid, and precipitation on the seafloor (sedimentary-type), or locally by metasomatic replacement of wall rocks (replacement-type). Petrographic analysis to the sub-micron scale revealed that the sedimentary-type ores most likely formed from a Fe-Si-rich gel and accompanying maturation. Early gel textures include the presence of spherules, aggregates, tubes, and filamentous stalks consisting of nanocrystalline haematite dispersed in a matrix of microcrystalline quartz. Local diagenetic Fe3+ reduction within the gel is indicated by siderite replacement of haematite. Replacement-type ores formed due to a two-step process including coprecipitation of (precursor) haematite and carbonates and subsequent metasomatic replacement by haematite. These ore-forming processes took place during a time when several restricted shallow marine basins in the north-eastern Rheic Ocean were influenced by extensive volcanism and associated hydrothermal fluid flux. Examples of similar volcanic-associated Fe-oxide occurrences of Silurian to Carboniferous age can be categorised as being of Lahn-Dill-type ores as well.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.