Andreas B. Kaufmann, Marina Lazarov, Stefan Weyer, Martin Števko, Stefan Kiefer, Juraj Majzlan
{"title":"斯洛伐克Pezinok锑矿床热液演化的锑同位素变化","authors":"Andreas B. Kaufmann, Marina Lazarov, Stefan Weyer, Martin Števko, Stefan Kiefer, Juraj Majzlan","doi":"10.1007/s00126-023-01222-7","DOIUrl":null,"url":null,"abstract":"<p>In this work, we investigated in situ isotopic compositions of antimony (Sb) minerals from two substages of the ore deposits near Pezinok (Slovakia). The δ<sup>123</sup>Sb values of the primary Sb minerals range from −0.4 and +0.8‰ and increase progressively along the precipitation sequence. In the substage II, the early-formed gudmundite (FeSbS) shows in all sections the lowest δ<sup>123</sup>Sb values, followed by berthierite (FeSb<sub>2</sub>S<sub>4</sub>), stibnite (Sb<sub>2</sub>S<sub>3</sub>), and valentinite (Sb<sub>2</sub>O<sub>3</sub>) with the heaviest δ<sup>123</sup>Sb values. A similar trend was observed for the substage III, from the initially-formed stibnite, followed by kermesite (Sb<sub>2</sub>S<sub>2</sub>O), valentinite, senarmontite (both Sb<sub>2</sub>O<sub>3</sub>), and schafarzikite (FeSb<sub>2</sub>O<sub>4</sub>). The evolution can be rationalized by a Rayleigh fractionation model with a starting δ<sup>123</sup>Sb value in the fluid of +0.3‰, applying the same mineral-fluid fractionation factor to all minerals. Thus, the texturally observed order of mineralization is confirmed by diminishing trace element contents and heavier δ<sup>123</sup>Sb values in successively crystallized Sb minerals. Antimony in substage III was likely supplied from the oxidative dissolution of stibnite that formed earlier during substage II. The data interpretation, although limited by the lack of reliable mineral-fluid fractionation factors, implies that Sb precipitation within each substage occurred from an episodic metal precipitation, likely associated with a similar Sb isotope fractionation between fluid and all investigated Sb minerals. Large isotopic variations, induced by precipitation from a fluid as a response to temperature decrease, may be an obstacle in deciphering the metal source in hydrothermal ore deposits. However, Sb isotopes appear to be an excellent instrument to enhance our understanding on how hydrothermal systems operate.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in antimony isotopic composition as a tracer of hydrothermal fluid evolution at the Sb deposits in Pezinok (Slovakia)\",\"authors\":\"Andreas B. Kaufmann, Marina Lazarov, Stefan Weyer, Martin Števko, Stefan Kiefer, Juraj Majzlan\",\"doi\":\"10.1007/s00126-023-01222-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we investigated in situ isotopic compositions of antimony (Sb) minerals from two substages of the ore deposits near Pezinok (Slovakia). The δ<sup>123</sup>Sb values of the primary Sb minerals range from −0.4 and +0.8‰ and increase progressively along the precipitation sequence. In the substage II, the early-formed gudmundite (FeSbS) shows in all sections the lowest δ<sup>123</sup>Sb values, followed by berthierite (FeSb<sub>2</sub>S<sub>4</sub>), stibnite (Sb<sub>2</sub>S<sub>3</sub>), and valentinite (Sb<sub>2</sub>O<sub>3</sub>) with the heaviest δ<sup>123</sup>Sb values. A similar trend was observed for the substage III, from the initially-formed stibnite, followed by kermesite (Sb<sub>2</sub>S<sub>2</sub>O), valentinite, senarmontite (both Sb<sub>2</sub>O<sub>3</sub>), and schafarzikite (FeSb<sub>2</sub>O<sub>4</sub>). The evolution can be rationalized by a Rayleigh fractionation model with a starting δ<sup>123</sup>Sb value in the fluid of +0.3‰, applying the same mineral-fluid fractionation factor to all minerals. Thus, the texturally observed order of mineralization is confirmed by diminishing trace element contents and heavier δ<sup>123</sup>Sb values in successively crystallized Sb minerals. Antimony in substage III was likely supplied from the oxidative dissolution of stibnite that formed earlier during substage II. The data interpretation, although limited by the lack of reliable mineral-fluid fractionation factors, implies that Sb precipitation within each substage occurred from an episodic metal precipitation, likely associated with a similar Sb isotope fractionation between fluid and all investigated Sb minerals. Large isotopic variations, induced by precipitation from a fluid as a response to temperature decrease, may be an obstacle in deciphering the metal source in hydrothermal ore deposits. However, Sb isotopes appear to be an excellent instrument to enhance our understanding on how hydrothermal systems operate.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-023-01222-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-023-01222-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Changes in antimony isotopic composition as a tracer of hydrothermal fluid evolution at the Sb deposits in Pezinok (Slovakia)
In this work, we investigated in situ isotopic compositions of antimony (Sb) minerals from two substages of the ore deposits near Pezinok (Slovakia). The δ123Sb values of the primary Sb minerals range from −0.4 and +0.8‰ and increase progressively along the precipitation sequence. In the substage II, the early-formed gudmundite (FeSbS) shows in all sections the lowest δ123Sb values, followed by berthierite (FeSb2S4), stibnite (Sb2S3), and valentinite (Sb2O3) with the heaviest δ123Sb values. A similar trend was observed for the substage III, from the initially-formed stibnite, followed by kermesite (Sb2S2O), valentinite, senarmontite (both Sb2O3), and schafarzikite (FeSb2O4). The evolution can be rationalized by a Rayleigh fractionation model with a starting δ123Sb value in the fluid of +0.3‰, applying the same mineral-fluid fractionation factor to all minerals. Thus, the texturally observed order of mineralization is confirmed by diminishing trace element contents and heavier δ123Sb values in successively crystallized Sb minerals. Antimony in substage III was likely supplied from the oxidative dissolution of stibnite that formed earlier during substage II. The data interpretation, although limited by the lack of reliable mineral-fluid fractionation factors, implies that Sb precipitation within each substage occurred from an episodic metal precipitation, likely associated with a similar Sb isotope fractionation between fluid and all investigated Sb minerals. Large isotopic variations, induced by precipitation from a fluid as a response to temperature decrease, may be an obstacle in deciphering the metal source in hydrothermal ore deposits. However, Sb isotopes appear to be an excellent instrument to enhance our understanding on how hydrothermal systems operate.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.