2021年陆县MS6.0震源区s波速度结构瑞利群和相速度联合反演

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Earthquake Science Pub Date : 2023-10-01 DOI:10.1016/j.eqs.2023.09.003
Wei Xu , Pingping Wu , Dahu Li , Huili Guo , Qiyan Yang , Laiyu Lu , Zhifeng Ding
{"title":"2021年陆县MS6.0震源区s波速度结构瑞利群和相速度联合反演","authors":"Wei Xu ,&nbsp;Pingping Wu ,&nbsp;Dahu Li ,&nbsp;Huili Guo ,&nbsp;Qiyan Yang ,&nbsp;Laiyu Lu ,&nbsp;Zhifeng Ding","doi":"10.1016/j.eqs.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>On September 16, 2021, a <em>M</em><sub>S</sub>6.0 earthquake struck Luxian County, one of the shale gas blocks in the Southeastern Sichuan Basin, China. To understand the seismogenic environment and its mechanism, we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter, by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s. The results showed that the velocity model varied significantly beneath different geological units. The Yujiasi syncline is characterized by low velocity at depths of ∼ 3.0–4.0 km, corresponding to the stable sedimentary layer in the Sichuan Basin. The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction, with a few local low-velocity zones. The Luxian <em>M</em><sub>S</sub>6.0 earthquake epicenter is located at the boundary between the high- and low-velocity zones, and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km. Integrated with the velocity variations around the epicenter, distribution of aftershock sequences, and focal mechanism solution, it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 5","pages":"Pages 356-375"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint inversion of Rayleigh group and phase velocities for S-wave velocity structure of the 2021 MS6.0 Luxian earthquake source area, China\",\"authors\":\"Wei Xu ,&nbsp;Pingping Wu ,&nbsp;Dahu Li ,&nbsp;Huili Guo ,&nbsp;Qiyan Yang ,&nbsp;Laiyu Lu ,&nbsp;Zhifeng Ding\",\"doi\":\"10.1016/j.eqs.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On September 16, 2021, a <em>M</em><sub>S</sub>6.0 earthquake struck Luxian County, one of the shale gas blocks in the Southeastern Sichuan Basin, China. To understand the seismogenic environment and its mechanism, we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter, by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s. The results showed that the velocity model varied significantly beneath different geological units. The Yujiasi syncline is characterized by low velocity at depths of ∼ 3.0–4.0 km, corresponding to the stable sedimentary layer in the Sichuan Basin. The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction, with a few local low-velocity zones. The Luxian <em>M</em><sub>S</sub>6.0 earthquake epicenter is located at the boundary between the high- and low-velocity zones, and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km. Integrated with the velocity variations around the epicenter, distribution of aftershock sequences, and focal mechanism solution, it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"36 5\",\"pages\":\"Pages 356-375\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451923000460\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000460","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

2021年9月16日,中国四川盆地东南部的页岩气区块之一泸县发生6.0级地震。为了了解发震环境及其机制,我们使用震中周围新部署的密集地震阵列的数据,通过提取并联合反演1.6–7.2 S周期内的瑞利相位和群速度,从环境噪声层析成像中反演了一个精细的三维S波速度模型。结果表明,不同地质单元下的速度模型变化较大。于家寺向斜的特征是速度较低,深度为~3.0~4.0km,与四川盆地的稳定沉积层相对应。华蓥山断裂带东西两支在北东-西向上普遍表现出高速,局部有少量低速带。泸县MS6.0级地震震中位于高低速带边界,地震序列从震中向东扩展,深度3.0~5.0km。综合震中周围速度变化、余震序列分布和震源机制解,据此推测,主震的孕震机制可能解释为水力压裂使原有断层复活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint inversion of Rayleigh group and phase velocities for S-wave velocity structure of the 2021 MS6.0 Luxian earthquake source area, China

On September 16, 2021, a MS6.0 earthquake struck Luxian County, one of the shale gas blocks in the Southeastern Sichuan Basin, China. To understand the seismogenic environment and its mechanism, we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter, by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s. The results showed that the velocity model varied significantly beneath different geological units. The Yujiasi syncline is characterized by low velocity at depths of ∼ 3.0–4.0 km, corresponding to the stable sedimentary layer in the Sichuan Basin. The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction, with a few local low-velocity zones. The Luxian MS6.0 earthquake epicenter is located at the boundary between the high- and low-velocity zones, and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km. Integrated with the velocity variations around the epicenter, distribution of aftershock sequences, and focal mechanism solution, it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
期刊最新文献
Structural similarity of lithospheric velocity models of Chinese mainland Assessing the effects of model parameter assumptions on surface-wave inversion results Evaluation of crustal deformation and associated strong motions induced by the 2022 Paktika earthquake, Afghanistan Mechanisms to explain soil liquefaction triggering, development, and persistence during an earthquake An illustrated guide to: Parsimonious multi-scale full-waveform inversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1