Nametso Linda. Moumakwa , Abubakar Sadiq Mohammed , Eyitayo Olatunde Olakanmi , Tobias Bader , Amare Gessesse
{"title":"高粱残基纤维增强聚合物复合材料的可持续表面改性:性能和粘附机理","authors":"Nametso Linda. Moumakwa , Abubakar Sadiq Mohammed , Eyitayo Olatunde Olakanmi , Tobias Bader , Amare Gessesse","doi":"10.1016/j.clema.2023.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Sorghum stalks and other agricultural residues in excess of farmers animal feed requirements are often burnt, contributing to environmental pollution. On the other hand, such residues could serve as useful sources of fibre with different applications. The aim of this study was to investigate agricultural residue-based fibres (ARFs), using sorghum stalks as a model, for use as reinforcements in recycled low-density polyethylene (rLDPE) for the manufacture of agricultural residue-based fibre reinforced polymer composites (ARFRPCs). Thermo-alkali and thermo-laccase fibre modification treatments were employed to improve the properties of the ARFRPCs. The thermal conductivity values of the ARFRPCs at 0.23 – 0.3 W/m‧k are higher than some commercially available insulators. Moreover, thermo-alkali reinforced ARFRPCs exhibited a tensile strength of 28.57 Mpa and improved microstructure/interfacial adhesion relative to intreated and thermo-laccase treated samples. The conclusion is that thermo-alkali reinforced ARFRPCs, which was treated for 10 days, be used for non-structural applications in buildings.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"8 ","pages":"Article 100189"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sustainable surface modification of sorghum residue-based fiber reinforced polymer composites: Properties and adhesion mechanism\",\"authors\":\"Nametso Linda. Moumakwa , Abubakar Sadiq Mohammed , Eyitayo Olatunde Olakanmi , Tobias Bader , Amare Gessesse\",\"doi\":\"10.1016/j.clema.2023.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sorghum stalks and other agricultural residues in excess of farmers animal feed requirements are often burnt, contributing to environmental pollution. On the other hand, such residues could serve as useful sources of fibre with different applications. The aim of this study was to investigate agricultural residue-based fibres (ARFs), using sorghum stalks as a model, for use as reinforcements in recycled low-density polyethylene (rLDPE) for the manufacture of agricultural residue-based fibre reinforced polymer composites (ARFRPCs). Thermo-alkali and thermo-laccase fibre modification treatments were employed to improve the properties of the ARFRPCs. The thermal conductivity values of the ARFRPCs at 0.23 – 0.3 W/m‧k are higher than some commercially available insulators. Moreover, thermo-alkali reinforced ARFRPCs exhibited a tensile strength of 28.57 Mpa and improved microstructure/interfacial adhesion relative to intreated and thermo-laccase treated samples. The conclusion is that thermo-alkali reinforced ARFRPCs, which was treated for 10 days, be used for non-structural applications in buildings.</p></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"8 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397623000229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397623000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustainable surface modification of sorghum residue-based fiber reinforced polymer composites: Properties and adhesion mechanism
Sorghum stalks and other agricultural residues in excess of farmers animal feed requirements are often burnt, contributing to environmental pollution. On the other hand, such residues could serve as useful sources of fibre with different applications. The aim of this study was to investigate agricultural residue-based fibres (ARFs), using sorghum stalks as a model, for use as reinforcements in recycled low-density polyethylene (rLDPE) for the manufacture of agricultural residue-based fibre reinforced polymer composites (ARFRPCs). Thermo-alkali and thermo-laccase fibre modification treatments were employed to improve the properties of the ARFRPCs. The thermal conductivity values of the ARFRPCs at 0.23 – 0.3 W/m‧k are higher than some commercially available insulators. Moreover, thermo-alkali reinforced ARFRPCs exhibited a tensile strength of 28.57 Mpa and improved microstructure/interfacial adhesion relative to intreated and thermo-laccase treated samples. The conclusion is that thermo-alkali reinforced ARFRPCs, which was treated for 10 days, be used for non-structural applications in buildings.