Yang-Jun Joo , Eui-Jin Kim , Dong-Kyu Kim , Peter Y. Park
{"title":"基于场理论的高速公路驾驶风险广义评价","authors":"Yang-Jun Joo , Eui-Jin Kim , Dong-Kyu Kim , Peter Y. Park","doi":"10.1016/j.amar.2023.100303","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a new safety measure derived from field theory. It evaluates the risk arising from the various concurrent conflicts within a platoon that can occur on high-speed highway driving situations, such as car-following, yielding, and lane changing. We defined the risk field as a finite scalar field produced by traveling vehicles on the road, and we defined the conflict field as the overlapping risk field between any vehicles in proximity on the roadway. The study used a probabilistic trajectory prediction model to construct risk fields and an approximation method to reduce the computational time for real-time applications. To demonstrate the applicability of the proposed new measure, we applied it to real-world trajectory data (NGSIM data from US Highway 101). We compared the results with three traditional conflict-based safety measures: post-encroachment time (PET), modified time-to-collision (MTTC), and deceleration rate to avoid a crash (DRAC). The new measure produced seamless and continuous risk estimations even during time windows when the other measures could not estimate the risk between vehicles. This is a major advantage over traditional measures. The study also developed visual displays of the estimated conflict fields to provide safety analysts with an intuitive and fast understanding of the results of the safety assessments made using the conflict field measure. We conclude that the proposed new safety measure provides a robust, reliable, and improved assessment of the risk involved in expected future mixed-traffic environments that involve both human-driven vehicles and automated vehicles in the future.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100303"},"PeriodicalIF":12.5000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized driving risk assessment on high-speed highways using field theory\",\"authors\":\"Yang-Jun Joo , Eui-Jin Kim , Dong-Kyu Kim , Peter Y. Park\",\"doi\":\"10.1016/j.amar.2023.100303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a new safety measure derived from field theory. It evaluates the risk arising from the various concurrent conflicts within a platoon that can occur on high-speed highway driving situations, such as car-following, yielding, and lane changing. We defined the risk field as a finite scalar field produced by traveling vehicles on the road, and we defined the conflict field as the overlapping risk field between any vehicles in proximity on the roadway. The study used a probabilistic trajectory prediction model to construct risk fields and an approximation method to reduce the computational time for real-time applications. To demonstrate the applicability of the proposed new measure, we applied it to real-world trajectory data (NGSIM data from US Highway 101). We compared the results with three traditional conflict-based safety measures: post-encroachment time (PET), modified time-to-collision (MTTC), and deceleration rate to avoid a crash (DRAC). The new measure produced seamless and continuous risk estimations even during time windows when the other measures could not estimate the risk between vehicles. This is a major advantage over traditional measures. The study also developed visual displays of the estimated conflict fields to provide safety analysts with an intuitive and fast understanding of the results of the safety assessments made using the conflict field measure. We conclude that the proposed new safety measure provides a robust, reliable, and improved assessment of the risk involved in expected future mixed-traffic environments that involve both human-driven vehicles and automated vehicles in the future.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"40 \",\"pages\":\"Article 100303\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665723000386\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665723000386","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
A generalized driving risk assessment on high-speed highways using field theory
This study presents a new safety measure derived from field theory. It evaluates the risk arising from the various concurrent conflicts within a platoon that can occur on high-speed highway driving situations, such as car-following, yielding, and lane changing. We defined the risk field as a finite scalar field produced by traveling vehicles on the road, and we defined the conflict field as the overlapping risk field between any vehicles in proximity on the roadway. The study used a probabilistic trajectory prediction model to construct risk fields and an approximation method to reduce the computational time for real-time applications. To demonstrate the applicability of the proposed new measure, we applied it to real-world trajectory data (NGSIM data from US Highway 101). We compared the results with three traditional conflict-based safety measures: post-encroachment time (PET), modified time-to-collision (MTTC), and deceleration rate to avoid a crash (DRAC). The new measure produced seamless and continuous risk estimations even during time windows when the other measures could not estimate the risk between vehicles. This is a major advantage over traditional measures. The study also developed visual displays of the estimated conflict fields to provide safety analysts with an intuitive and fast understanding of the results of the safety assessments made using the conflict field measure. We conclude that the proposed new safety measure provides a robust, reliable, and improved assessment of the risk involved in expected future mixed-traffic environments that involve both human-driven vehicles and automated vehicles in the future.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.