微生物组维持森林生态系统跨层级的功能

Fengqiao Li , Haiyun Zi , Christian Sonne , Xiaogang Li
{"title":"微生物组维持森林生态系统跨层级的功能","authors":"Fengqiao Li ,&nbsp;Haiyun Zi ,&nbsp;Christian Sonne ,&nbsp;Xiaogang Li","doi":"10.1016/j.eehl.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Forests are highly productive ecosystems that contribute to biogeochemical cycles of carbon and nitrogen, through which it regulates climate and global change. Forests are also spatially highly heterogeneous ecosystems that comprise a multitude of microbial-mediated reactive interfaces. These are mainly the root–soil interface, litter–soil interface, root–root interface, and plant–atmosphere interface. Each of these interfaces has its own unique characteristics, e.g., specific drivers that affect the microbial abundance, nutrient availability, microbial community, and the dominance of certain microbial taxa. Here, we review the microbial-mediated reactive interfaces in forests, focusing on interrelation and dynamics of fungi and bacteria on a broad temporal scale with ecosystem processes ranging from short-term events (e.g., seasonal changes) to long-term stand development suffering a global climate change (e.g., global warming or nitrogen deposition). We argue that in-depth knowledge of forest microbiology can only be obtained by exploring the complex forest microbiome and its ecosystem functions. Underpinning the basis for individual forest variation would ultimately facilitate the formulation of microbiome-based strategies in the future.</p></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Microbiome sustains forest ecosystem functions across hierarchical scales\",\"authors\":\"Fengqiao Li ,&nbsp;Haiyun Zi ,&nbsp;Christian Sonne ,&nbsp;Xiaogang Li\",\"doi\":\"10.1016/j.eehl.2023.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forests are highly productive ecosystems that contribute to biogeochemical cycles of carbon and nitrogen, through which it regulates climate and global change. Forests are also spatially highly heterogeneous ecosystems that comprise a multitude of microbial-mediated reactive interfaces. These are mainly the root–soil interface, litter–soil interface, root–root interface, and plant–atmosphere interface. Each of these interfaces has its own unique characteristics, e.g., specific drivers that affect the microbial abundance, nutrient availability, microbial community, and the dominance of certain microbial taxa. Here, we review the microbial-mediated reactive interfaces in forests, focusing on interrelation and dynamics of fungi and bacteria on a broad temporal scale with ecosystem processes ranging from short-term events (e.g., seasonal changes) to long-term stand development suffering a global climate change (e.g., global warming or nitrogen deposition). We argue that in-depth knowledge of forest microbiology can only be obtained by exploring the complex forest microbiome and its ecosystem functions. Underpinning the basis for individual forest variation would ultimately facilitate the formulation of microbiome-based strategies in the future.</p></div>\",\"PeriodicalId\":29813,\"journal\":{\"name\":\"Eco-Environment & Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eco-Environment & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772985023000108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985023000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

森林是生产力很高的生态系统,有助于碳和氮的生物地球化学循环,从而调节气候和全球变化。森林也是空间高度异质的生态系统,包括大量微生物介导的反应界面。主要是根-土界面、枯枝落叶层-土界面,根-根界面和植物-大气界面。这些界面中的每一个都有自己独特的特征,例如,影响微生物丰度、营养物质可用性、微生物群落和某些微生物类群优势的特定驱动因素。在这里,我们回顾了森林中微生物介导的反应界面,重点关注真菌和细菌在广泛的时间尺度上与生态系统过程的相互关系和动力学,从短期事件(如季节变化)到遭受全球气候变化(如全球变暖或氮沉积)的长期林分发展。我们认为,只有通过探索复杂的森林微生物组及其生态系统功能,才能获得深入的森林微生物学知识。为个体森林变异奠定基础,最终将有助于制定未来基于微生物组的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbiome sustains forest ecosystem functions across hierarchical scales

Forests are highly productive ecosystems that contribute to biogeochemical cycles of carbon and nitrogen, through which it regulates climate and global change. Forests are also spatially highly heterogeneous ecosystems that comprise a multitude of microbial-mediated reactive interfaces. These are mainly the root–soil interface, litter–soil interface, root–root interface, and plant–atmosphere interface. Each of these interfaces has its own unique characteristics, e.g., specific drivers that affect the microbial abundance, nutrient availability, microbial community, and the dominance of certain microbial taxa. Here, we review the microbial-mediated reactive interfaces in forests, focusing on interrelation and dynamics of fungi and bacteria on a broad temporal scale with ecosystem processes ranging from short-term events (e.g., seasonal changes) to long-term stand development suffering a global climate change (e.g., global warming or nitrogen deposition). We argue that in-depth knowledge of forest microbiology can only be obtained by exploring the complex forest microbiome and its ecosystem functions. Underpinning the basis for individual forest variation would ultimately facilitate the formulation of microbiome-based strategies in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
期刊最新文献
Leveraging the One Health concept for arsenic sustainability Emergency of per- and polyfluoroalkyl substances in drinking water: Status, regulation, and mitigation strategies in developing countries Assessing bioactivity of environmental water samples filtered using nanomembrane technology and mammalian cell lines Early-life exposure to per- and polyfluoroalkyl substances: Analysis of levels, health risk and binding abilities to transport proteins Endogenous hormones matters in evaluation of endocrine disruptive effects mediated by nuclear receptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1