Chengyuan Zhang , Zhigang Peng , Xiaoyan Liu , Chenyu Li
{"title":"加州索尔顿海地热田浅层地震速度时空变化对大区域地震和长期地热活动的响应","authors":"Chengyuan Zhang , Zhigang Peng , Xiaoyan Liu , Chenyu Li","doi":"10.1016/j.eqrea.2022.100178","DOIUrl":null,"url":null,"abstract":"<div><p>We measure spatio-temporal variations of seismic velocity changes in Salton Sea Geothermal Field, California based on cross correlations of daily seismic traces recorded by a borehole seismic network from December 2007 to January 2014. We find clear co-seismic velocity reductions during the 2010 <em>M</em> 7.2 El Mayor–Cucapah, Mexico earthquake at ∼100 km further south, followed by long-term recoveries. The co-seismic reductions are larger with longer post-seismic recoveries in higher frequency bands, indicating that material damage and healing process mostly occurred in the shallow depth. In addition, the co-seismic velocity reductions are larger for ray paths outside the active fluid injection/extraction regions. The ray paths inside injection/extraction regions are associated with smaller co-seismic reductions, but subtle long-term velocity increases. We also build 3D transient water flow models based on monthly injection/extraction rates, and find correlations between several water flow parameters and co-seismic velocity reductions. We interpret the relative lack of co-seismic velocity changes within the geothermal region as unclogging of fracture network due to persistent fluid flows of geothermal production. The long-term velocity increase is likely associated with the ground water depletion and subsidence due to net production.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"3 2","pages":"Article 100178"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatio-temporal variations of shallow seismic velocity changes in Salton Sea Geothermal Field, California in response to large regional earthquakes and long-term geothermal activities\",\"authors\":\"Chengyuan Zhang , Zhigang Peng , Xiaoyan Liu , Chenyu Li\",\"doi\":\"10.1016/j.eqrea.2022.100178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We measure spatio-temporal variations of seismic velocity changes in Salton Sea Geothermal Field, California based on cross correlations of daily seismic traces recorded by a borehole seismic network from December 2007 to January 2014. We find clear co-seismic velocity reductions during the 2010 <em>M</em> 7.2 El Mayor–Cucapah, Mexico earthquake at ∼100 km further south, followed by long-term recoveries. The co-seismic reductions are larger with longer post-seismic recoveries in higher frequency bands, indicating that material damage and healing process mostly occurred in the shallow depth. In addition, the co-seismic velocity reductions are larger for ray paths outside the active fluid injection/extraction regions. The ray paths inside injection/extraction regions are associated with smaller co-seismic reductions, but subtle long-term velocity increases. We also build 3D transient water flow models based on monthly injection/extraction rates, and find correlations between several water flow parameters and co-seismic velocity reductions. We interpret the relative lack of co-seismic velocity changes within the geothermal region as unclogging of fracture network due to persistent fluid flows of geothermal production. The long-term velocity increase is likely associated with the ground water depletion and subsidence due to net production.</p></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"3 2\",\"pages\":\"Article 100178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467022000690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467022000690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatio-temporal variations of shallow seismic velocity changes in Salton Sea Geothermal Field, California in response to large regional earthquakes and long-term geothermal activities
We measure spatio-temporal variations of seismic velocity changes in Salton Sea Geothermal Field, California based on cross correlations of daily seismic traces recorded by a borehole seismic network from December 2007 to January 2014. We find clear co-seismic velocity reductions during the 2010 M 7.2 El Mayor–Cucapah, Mexico earthquake at ∼100 km further south, followed by long-term recoveries. The co-seismic reductions are larger with longer post-seismic recoveries in higher frequency bands, indicating that material damage and healing process mostly occurred in the shallow depth. In addition, the co-seismic velocity reductions are larger for ray paths outside the active fluid injection/extraction regions. The ray paths inside injection/extraction regions are associated with smaller co-seismic reductions, but subtle long-term velocity increases. We also build 3D transient water flow models based on monthly injection/extraction rates, and find correlations between several water flow parameters and co-seismic velocity reductions. We interpret the relative lack of co-seismic velocity changes within the geothermal region as unclogging of fracture network due to persistent fluid flows of geothermal production. The long-term velocity increase is likely associated with the ground water depletion and subsidence due to net production.