地震潜在危害的实时预测:以2022年1月8日中国青海门源6.9级地震为例

Jindong Song , Jingbao Zhu , Yongxiang Wei , Shuilong Li , Shanyou Li
{"title":"地震潜在危害的实时预测:以2022年1月8日中国青海门源6.9级地震为例","authors":"Jindong Song ,&nbsp;Jingbao Zhu ,&nbsp;Yongxiang Wei ,&nbsp;Shuilong Li ,&nbsp;Shanyou Li","doi":"10.1016/j.eqrea.2022.100197","DOIUrl":null,"url":null,"abstract":"<div><p>It is critical to determine whether a site has potential damage in real-time after an earthquake occurs, which is a challenge in earthquake disaster reduction. Here, we propose a real-time <strong>E</strong>arthquake <strong>P</strong>otential <strong>D</strong>amage predict<strong>or</strong> (EPDor) based on predicting peak ground velocities (PGVs) of sites. The EPDor is composed of three parts: (1) predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models; (2) predicting the PGVs at distant sites based on the empirical ground motion prediction equation; (3) generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in (1) and (2). We apply the EPDor to the 2022 <em>M</em><sub>S</sub> 6.9 Menyuan earthquake in Qinghai Province, China to predict its potential damage. Within the initial few seconds after the first station is triggered, the EPDor can determine directly whether there is potential damage for some sites to a certain degree. Hence, we infer that the EPDor has potential application for future earthquakes. Meanwhile, it also has potential in Chinese earthquake early warning system.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"3 1","pages":"Article 100197"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time prediction of earthquake potential damage: A case study for the January 8, 2022 MS 6.9 Menyuan earthquake in Qinghai, China\",\"authors\":\"Jindong Song ,&nbsp;Jingbao Zhu ,&nbsp;Yongxiang Wei ,&nbsp;Shuilong Li ,&nbsp;Shanyou Li\",\"doi\":\"10.1016/j.eqrea.2022.100197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is critical to determine whether a site has potential damage in real-time after an earthquake occurs, which is a challenge in earthquake disaster reduction. Here, we propose a real-time <strong>E</strong>arthquake <strong>P</strong>otential <strong>D</strong>amage predict<strong>or</strong> (EPDor) based on predicting peak ground velocities (PGVs) of sites. The EPDor is composed of three parts: (1) predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models; (2) predicting the PGVs at distant sites based on the empirical ground motion prediction equation; (3) generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in (1) and (2). We apply the EPDor to the 2022 <em>M</em><sub>S</sub> 6.9 Menyuan earthquake in Qinghai Province, China to predict its potential damage. Within the initial few seconds after the first station is triggered, the EPDor can determine directly whether there is potential damage for some sites to a certain degree. Hence, we infer that the EPDor has potential application for future earthquakes. Meanwhile, it also has potential in Chinese earthquake early warning system.</p></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"3 1\",\"pages\":\"Article 100197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467022000884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467022000884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震发生后,实时确定场地是否存在潜在破坏至关重要,这是地震减灾的一个挑战。在这里,我们提出了一个基于预测场地峰值地面速度(PGV)的实时地震潜在损害预测器(EPDor)。EPDor由三部分组成:(1)基于机器学习预测模型预测地震震级和触发台站的PGV;(2) 基于经验地面运动预测方程来预测远处地点的PGV;(3) 基于基于(1)和(2)中的预测值的加权平均的插值处理,通过预测每个网格点的PGV来生成PGV图。我们将EPDor应用于2022年青海门源6.9级地震,以预测其潜在破坏。在第一个站点触发后的最初几秒钟内,EPDor可以直接确定某些站点是否存在一定程度的潜在损坏。因此,我们推断EPDor对未来的地震有潜在的应用。同时,它在中国地震预警系统中也具有一定的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time prediction of earthquake potential damage: A case study for the January 8, 2022 MS 6.9 Menyuan earthquake in Qinghai, China

It is critical to determine whether a site has potential damage in real-time after an earthquake occurs, which is a challenge in earthquake disaster reduction. Here, we propose a real-time Earthquake Potential Damage predictor (EPDor) based on predicting peak ground velocities (PGVs) of sites. The EPDor is composed of three parts: (1) predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models; (2) predicting the PGVs at distant sites based on the empirical ground motion prediction equation; (3) generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in (1) and (2). We apply the EPDor to the 2022 MS 6.9 Menyuan earthquake in Qinghai Province, China to predict its potential damage. Within the initial few seconds after the first station is triggered, the EPDor can determine directly whether there is potential damage for some sites to a certain degree. Hence, we infer that the EPDor has potential application for future earthquakes. Meanwhile, it also has potential in Chinese earthquake early warning system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Site classification methodology using support vector machine: A study Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods Data merging methods for S-wave velocity and azimuthal anisotropy from different regions Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1