FIO-CPS v2.0对中国2米气温预报的评价

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Dynamics of Atmospheres and Oceans Pub Date : 2023-09-01 DOI:10.1016/j.dynatmoce.2023.101391
Qiuying Fu , Zhenya Song , Zhongkai Bo , Ying Bao , Chan Joo Jang , Yajuan Song
{"title":"FIO-CPS v2.0对中国2米气温预报的评价","authors":"Qiuying Fu ,&nbsp;Zhenya Song ,&nbsp;Zhongkai Bo ,&nbsp;Ying Bao ,&nbsp;Chan Joo Jang ,&nbsp;Yajuan Song","doi":"10.1016/j.dynatmoce.2023.101391","DOIUrl":null,"url":null,"abstract":"<div><p>The climate prediction<span> system is an essential tool for predicting climatological state and variability. Systematic evaluation of the output is critical for assessing the prediction performance and making improvement. In this study, we evaluate the prediction capability of the First Institute of Oceanography-Climate Prediction System version 2.0 (FIO-CPS v2.0), a short-term climate prediction system, on the 2-meter air temperature over China using five criteria, namely prediction score (PS), prediction consistency (PC), correlation coefficient<span> (CC), root mean square error (RMSE), and distance between indices of simulation and observation (DISO). The results showed that FIO-CPS v2.0 has higher accuracy in summer, and its performance varies with different lead times depending on the evaluation criteria used. Higher overall prediction skill was mostly found in the northeastern region during July and September, and the southeastern coastal region during June–September. Our findings provide insights into the prediction ability of the FIO-CPS v2.0 on air temperature and may help to facilitate its development.</span></span></p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101391"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the FIO-CPS v2.0 in predicting 2-meter air temperature over China\",\"authors\":\"Qiuying Fu ,&nbsp;Zhenya Song ,&nbsp;Zhongkai Bo ,&nbsp;Ying Bao ,&nbsp;Chan Joo Jang ,&nbsp;Yajuan Song\",\"doi\":\"10.1016/j.dynatmoce.2023.101391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The climate prediction<span> system is an essential tool for predicting climatological state and variability. Systematic evaluation of the output is critical for assessing the prediction performance and making improvement. In this study, we evaluate the prediction capability of the First Institute of Oceanography-Climate Prediction System version 2.0 (FIO-CPS v2.0), a short-term climate prediction system, on the 2-meter air temperature over China using five criteria, namely prediction score (PS), prediction consistency (PC), correlation coefficient<span> (CC), root mean square error (RMSE), and distance between indices of simulation and observation (DISO). The results showed that FIO-CPS v2.0 has higher accuracy in summer, and its performance varies with different lead times depending on the evaluation criteria used. Higher overall prediction skill was mostly found in the northeastern region during July and September, and the southeastern coastal region during June–September. Our findings provide insights into the prediction ability of the FIO-CPS v2.0 on air temperature and may help to facilitate its development.</span></span></p></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":\"103 \",\"pages\":\"Article 101391\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026523000428\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026523000428","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

气候预测系统是预测气候状态和变化的重要工具。对输出的系统评估对于评估预测性能和进行改进至关重要。在本研究中,我们使用预测得分(PS)、预测一致性(PC)、相关系数(CC)、均方根误差(RMSE)、,以及模拟和观测指标之间的距离(DISO)。结果表明,FIO-CPS v2.0在夏季具有更高的准确性,其性能随交付周期的不同而变化,具体取决于所使用的评估标准。较高的总体预测技能主要出现在7月和9月的东北地区,以及6月至9月的东南沿海地区。我们的发现为FIO-CPS v2.0对气温的预测能力提供了见解,并可能有助于促进其发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of the FIO-CPS v2.0 in predicting 2-meter air temperature over China

The climate prediction system is an essential tool for predicting climatological state and variability. Systematic evaluation of the output is critical for assessing the prediction performance and making improvement. In this study, we evaluate the prediction capability of the First Institute of Oceanography-Climate Prediction System version 2.0 (FIO-CPS v2.0), a short-term climate prediction system, on the 2-meter air temperature over China using five criteria, namely prediction score (PS), prediction consistency (PC), correlation coefficient (CC), root mean square error (RMSE), and distance between indices of simulation and observation (DISO). The results showed that FIO-CPS v2.0 has higher accuracy in summer, and its performance varies with different lead times depending on the evaluation criteria used. Higher overall prediction skill was mostly found in the northeastern region during July and September, and the southeastern coastal region during June–September. Our findings provide insights into the prediction ability of the FIO-CPS v2.0 on air temperature and may help to facilitate its development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
期刊最新文献
Impact of boundary layer parameterizations on simulated seasonal meteorology over North-East India Mapping the dynamics of global sea surface nitrate using ocean color data The vortex splitting process from interaction between a mesoscale vortex and two islands The curious case of a strong relationship between ENSO and Indian summer monsoon in CFSv2 model Study on the genesis and development trend of tropical depressions under different large-scale backgrounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1