{"title":"创新家庭堆肥系统中堆肥过程的实验研究:添加剂的影响","authors":"Markos Margaritis , Vassilis Dimos , Dimitris Malamis , Maria Loizidou","doi":"10.1016/j.clema.2023.100185","DOIUrl":null,"url":null,"abstract":"<div><p>Food-waste out of household consumption ends up in landfills resulting into huge waste of materials and energy enhancing greenhouse effect and threatening water supplies. Composting is common solution for solid organic waste management and can safely and effectively be employed in each household to produce quality compost materials. This study palpates the average composition of the Mediterranean dietary pattern food-wastes and investigates the efficiency of a novel home-composter in managing organic wastes from dish to composter to quality compost. Four different additives, low cost and easily found in the market, are addressed, (1) woodchip, (2) woodchips & zeolite, (3) woodchips & vermiculite and (4) perlite. C/N≈20 substrate’s composition is investigated.</p><p>Results indicate that the composting process effectively converts food-wastes to compost within 21 days. The monitored parameters show good aeration and humidity levels of the substrate and an aerobic process. The product exhibits minor alkalinity and requires further maturing. Mineral additives help reducing TOC with vermiculite and perlite be the most promising. Zeolite and vermiculite result in higher TKN values of the product with zeolite exhibiting better performance. All minerals enchance C/N reduction when woodchips is proven inadequate as an additive if employed alone. The product can safely be used in domestic applications.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"8 ","pages":"Article 100185"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental investigation of the composting process in an innovative home composting System: The influence of additives\",\"authors\":\"Markos Margaritis , Vassilis Dimos , Dimitris Malamis , Maria Loizidou\",\"doi\":\"10.1016/j.clema.2023.100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Food-waste out of household consumption ends up in landfills resulting into huge waste of materials and energy enhancing greenhouse effect and threatening water supplies. Composting is common solution for solid organic waste management and can safely and effectively be employed in each household to produce quality compost materials. This study palpates the average composition of the Mediterranean dietary pattern food-wastes and investigates the efficiency of a novel home-composter in managing organic wastes from dish to composter to quality compost. Four different additives, low cost and easily found in the market, are addressed, (1) woodchip, (2) woodchips & zeolite, (3) woodchips & vermiculite and (4) perlite. C/N≈20 substrate’s composition is investigated.</p><p>Results indicate that the composting process effectively converts food-wastes to compost within 21 days. The monitored parameters show good aeration and humidity levels of the substrate and an aerobic process. The product exhibits minor alkalinity and requires further maturing. Mineral additives help reducing TOC with vermiculite and perlite be the most promising. Zeolite and vermiculite result in higher TKN values of the product with zeolite exhibiting better performance. All minerals enchance C/N reduction when woodchips is proven inadequate as an additive if employed alone. The product can safely be used in domestic applications.</p></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"8 \",\"pages\":\"Article 100185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397623000187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397623000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An experimental investigation of the composting process in an innovative home composting System: The influence of additives
Food-waste out of household consumption ends up in landfills resulting into huge waste of materials and energy enhancing greenhouse effect and threatening water supplies. Composting is common solution for solid organic waste management and can safely and effectively be employed in each household to produce quality compost materials. This study palpates the average composition of the Mediterranean dietary pattern food-wastes and investigates the efficiency of a novel home-composter in managing organic wastes from dish to composter to quality compost. Four different additives, low cost and easily found in the market, are addressed, (1) woodchip, (2) woodchips & zeolite, (3) woodchips & vermiculite and (4) perlite. C/N≈20 substrate’s composition is investigated.
Results indicate that the composting process effectively converts food-wastes to compost within 21 days. The monitored parameters show good aeration and humidity levels of the substrate and an aerobic process. The product exhibits minor alkalinity and requires further maturing. Mineral additives help reducing TOC with vermiculite and perlite be the most promising. Zeolite and vermiculite result in higher TKN values of the product with zeolite exhibiting better performance. All minerals enchance C/N reduction when woodchips is proven inadequate as an additive if employed alone. The product can safely be used in domestic applications.