{"title":"形状记忆型热塑性聚氨酯长丝在不同温度条件下3D打印可入式长条的形状恢复性能","authors":"Imjoo Jung, Sunhee Lee","doi":"10.1186/s40691-023-00348-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, to confirm the applicability as the actuator of the re-entrant (RE) structure strip using 3D printing with shape memory thermoplastic polyurethane material, two types of 3D printing infill conditions and five extension temperature conditions were applied. REstrip was analyzed through differential scanning calorimetry (DSC), tensile properties, Poisson’s ratio properties, and shape recovery properties according to temperature conditions. The DSC results showed that the glass transition temperature peaks of the SMTPU filament and the 3D printed REstrip were in the range of about 30–60 °C. In terms of tensile properties, the initial modulus, maximum stress, and yield stress of REstrip all decreased, while the elongation at break increased with increasing extension temperature. In terms of Poisson’s ratio, it was confirmed that as the extension temperature rises, Poisson’s ratio shows a positive value at a lower elongation, and the deformation is best at 50 °C. As a result of the shape memory property, the shape recovery ratio tended to decrease as the tensile deformation temperature increased.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00348-6","citationCount":"0","resultStr":"{\"title\":\"Shape recovery properties of 3D printed re-entrant strip using shape memory thermoplastic polyurethane filaments with various temperature conditions\",\"authors\":\"Imjoo Jung, Sunhee Lee\",\"doi\":\"10.1186/s40691-023-00348-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, to confirm the applicability as the actuator of the re-entrant (RE) structure strip using 3D printing with shape memory thermoplastic polyurethane material, two types of 3D printing infill conditions and five extension temperature conditions were applied. REstrip was analyzed through differential scanning calorimetry (DSC), tensile properties, Poisson’s ratio properties, and shape recovery properties according to temperature conditions. The DSC results showed that the glass transition temperature peaks of the SMTPU filament and the 3D printed REstrip were in the range of about 30–60 °C. In terms of tensile properties, the initial modulus, maximum stress, and yield stress of REstrip all decreased, while the elongation at break increased with increasing extension temperature. In terms of Poisson’s ratio, it was confirmed that as the extension temperature rises, Poisson’s ratio shows a positive value at a lower elongation, and the deformation is best at 50 °C. As a result of the shape memory property, the shape recovery ratio tended to decrease as the tensile deformation temperature increased.</p></div>\",\"PeriodicalId\":555,\"journal\":{\"name\":\"Fashion and Textiles\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00348-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fashion and Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40691-023-00348-6\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-023-00348-6","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Shape recovery properties of 3D printed re-entrant strip using shape memory thermoplastic polyurethane filaments with various temperature conditions
In this research, to confirm the applicability as the actuator of the re-entrant (RE) structure strip using 3D printing with shape memory thermoplastic polyurethane material, two types of 3D printing infill conditions and five extension temperature conditions were applied. REstrip was analyzed through differential scanning calorimetry (DSC), tensile properties, Poisson’s ratio properties, and shape recovery properties according to temperature conditions. The DSC results showed that the glass transition temperature peaks of the SMTPU filament and the 3D printed REstrip were in the range of about 30–60 °C. In terms of tensile properties, the initial modulus, maximum stress, and yield stress of REstrip all decreased, while the elongation at break increased with increasing extension temperature. In terms of Poisson’s ratio, it was confirmed that as the extension temperature rises, Poisson’s ratio shows a positive value at a lower elongation, and the deformation is best at 50 °C. As a result of the shape memory property, the shape recovery ratio tended to decrease as the tensile deformation temperature increased.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.