基于Knoevenagel缩合反应的伤口愈合自愈水凝胶

Xiaoya Ding , Yunru Yu , Yan Zu
{"title":"基于Knoevenagel缩合反应的伤口愈合自愈水凝胶","authors":"Xiaoya Ding ,&nbsp;Yunru Yu ,&nbsp;Yan Zu","doi":"10.1016/j.bmt.2022.11.008","DOIUrl":null,"url":null,"abstract":"<div><p>Self-healing hydrogels are promising biomedical materials owing to their ability to restore the structure fracture and regain the initial functions. However, a comprehensive review of the dynamic hydrogels based on the Knoevenagel Condensation (KC) for wound healing is yet lacking. Here, we first summarize the recent advances in self-healing hydrogels constructed by the KC reaction, and then systematically illustrate the reaction process and self-healing mechanisms. The features of these hydrogels, for instance, self-healing characteristics, injectability, thermosensitivity, as well as thermoplastic properties are also highlighted. In addition, a series of hydrogels constructed by this reaction in the presence of various catalysts are presented and discussed. Furthermore, the potential application within the rapidly expanding field of wound healing is discussed in detail. Finally, recommendations to guide the designing strategies and a perspective on challenges faced by this kind of hydrogels are also described.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"2 ","pages":"Pages 70-76"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-healing hydrogels based on the Knoevenagel condensation reaction for wound healing\",\"authors\":\"Xiaoya Ding ,&nbsp;Yunru Yu ,&nbsp;Yan Zu\",\"doi\":\"10.1016/j.bmt.2022.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-healing hydrogels are promising biomedical materials owing to their ability to restore the structure fracture and regain the initial functions. However, a comprehensive review of the dynamic hydrogels based on the Knoevenagel Condensation (KC) for wound healing is yet lacking. Here, we first summarize the recent advances in self-healing hydrogels constructed by the KC reaction, and then systematically illustrate the reaction process and self-healing mechanisms. The features of these hydrogels, for instance, self-healing characteristics, injectability, thermosensitivity, as well as thermoplastic properties are also highlighted. In addition, a series of hydrogels constructed by this reaction in the presence of various catalysts are presented and discussed. Furthermore, the potential application within the rapidly expanding field of wound healing is discussed in detail. Finally, recommendations to guide the designing strategies and a perspective on challenges faced by this kind of hydrogels are also described.</p></div>\",\"PeriodicalId\":100180,\"journal\":{\"name\":\"Biomedical Technology\",\"volume\":\"2 \",\"pages\":\"Pages 70-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949723X22000101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X22000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自修复水凝胶具有修复结构断裂和恢复初始功能的能力,是一种很有前途的生物医学材料。然而,基于Knoevenagel缩合物(KC)的用于伤口愈合的动态水凝胶还缺乏全面的综述。在这里,我们首先总结了KC反应构建的自修复水凝胶的最新进展,然后系统地阐述了反应过程和自修复机制。还强调了这些水凝胶的特征,例如自修复特性、可注射性、热敏性以及热塑性。此外,还介绍和讨论了在各种催化剂存在下通过该反应构建的一系列水凝胶。此外,还详细讨论了在快速扩展的伤口愈合领域中的潜在应用。最后,还介绍了指导设计策略的建议,以及对这类水凝胶面临的挑战的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-healing hydrogels based on the Knoevenagel condensation reaction for wound healing

Self-healing hydrogels are promising biomedical materials owing to their ability to restore the structure fracture and regain the initial functions. However, a comprehensive review of the dynamic hydrogels based on the Knoevenagel Condensation (KC) for wound healing is yet lacking. Here, we first summarize the recent advances in self-healing hydrogels constructed by the KC reaction, and then systematically illustrate the reaction process and self-healing mechanisms. The features of these hydrogels, for instance, self-healing characteristics, injectability, thermosensitivity, as well as thermoplastic properties are also highlighted. In addition, a series of hydrogels constructed by this reaction in the presence of various catalysts are presented and discussed. Furthermore, the potential application within the rapidly expanding field of wound healing is discussed in detail. Finally, recommendations to guide the designing strategies and a perspective on challenges faced by this kind of hydrogels are also described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Developing biotechnologies in organoids for liver cancer Space manufacturing of a bone tissue destined for patients on Earth? Antibacterial hydrogels for bacteria-infected wound treatment Biomaterial-based circular RNA therapeutic strategy for repairing intervertebral disc degeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1