Danqing Huang, Jinglin Wang, Junyi Che, Baojie Wen, Wentao Kong
{"title":"来自液滴微流体的超声响应微粒","authors":"Danqing Huang, Jinglin Wang, Junyi Che, Baojie Wen, Wentao Kong","doi":"10.1016/j.bmt.2022.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound (US)-responsive microparticles show broad potential in controlled drug delivery systems. Compare with the traditional micron-scale material fabrication methods, capillary microfluidic technology features superior advantages in large-scale production, batch-to-batch similarity, high encapsulation efficiency, low cost, and so on. The excellent maneuverability and customizability of the capillary microfluidic devices allow the production of microparticles with various functionalities and fine-tuned chemical compartments. Moreover, the flexible regulation of the particle size and core-shell ratio can be easily realized by modulating the capillary orifices and flow rates of microfluidic channels. In this review, we introduce the fabrication of US-responsive microparticles with specific core-shell structures via capillary microfluidic methods, from single emulsion to triple emulsions. Then, we address some particular examples, where the drug delivery and US-triggered cargo release capacity of these microfluidic microparticles are demonstrated. Finally, we conclude the advanced achievements of the US-responsive microfluidic microparticles, summarize the obstacles to the development of this interdisciplinary field, and prospect their future applications.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"1 ","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultrasound-responsive microparticles from droplet microfluidics\",\"authors\":\"Danqing Huang, Jinglin Wang, Junyi Che, Baojie Wen, Wentao Kong\",\"doi\":\"10.1016/j.bmt.2022.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasound (US)-responsive microparticles show broad potential in controlled drug delivery systems. Compare with the traditional micron-scale material fabrication methods, capillary microfluidic technology features superior advantages in large-scale production, batch-to-batch similarity, high encapsulation efficiency, low cost, and so on. The excellent maneuverability and customizability of the capillary microfluidic devices allow the production of microparticles with various functionalities and fine-tuned chemical compartments. Moreover, the flexible regulation of the particle size and core-shell ratio can be easily realized by modulating the capillary orifices and flow rates of microfluidic channels. In this review, we introduce the fabrication of US-responsive microparticles with specific core-shell structures via capillary microfluidic methods, from single emulsion to triple emulsions. Then, we address some particular examples, where the drug delivery and US-triggered cargo release capacity of these microfluidic microparticles are demonstrated. Finally, we conclude the advanced achievements of the US-responsive microfluidic microparticles, summarize the obstacles to the development of this interdisciplinary field, and prospect their future applications.</p></div>\",\"PeriodicalId\":100180,\"journal\":{\"name\":\"Biomedical Technology\",\"volume\":\"1 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949723X22000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X22000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrasound-responsive microparticles from droplet microfluidics
Ultrasound (US)-responsive microparticles show broad potential in controlled drug delivery systems. Compare with the traditional micron-scale material fabrication methods, capillary microfluidic technology features superior advantages in large-scale production, batch-to-batch similarity, high encapsulation efficiency, low cost, and so on. The excellent maneuverability and customizability of the capillary microfluidic devices allow the production of microparticles with various functionalities and fine-tuned chemical compartments. Moreover, the flexible regulation of the particle size and core-shell ratio can be easily realized by modulating the capillary orifices and flow rates of microfluidic channels. In this review, we introduce the fabrication of US-responsive microparticles with specific core-shell structures via capillary microfluidic methods, from single emulsion to triple emulsions. Then, we address some particular examples, where the drug delivery and US-triggered cargo release capacity of these microfluidic microparticles are demonstrated. Finally, we conclude the advanced achievements of the US-responsive microfluidic microparticles, summarize the obstacles to the development of this interdisciplinary field, and prospect their future applications.