Christoph Schünemann , Astrid Ziemann , Valeri Goldberg
{"title":"使用微型气象模拟作为建筑模拟输入的空间分辨室内过热评估——机会和局限性","authors":"Christoph Schünemann , Astrid Ziemann , Valeri Goldberg","doi":"10.1016/j.cacint.2023.100122","DOIUrl":null,"url":null,"abstract":"<div><p>To assess the spatial heat resilience of buildings in urban development we test the suitability of a toolchain approach from microscale meteorological simulations, resolving the spatial influences on local urban climate, to building performance simulations, evaluating the indoor overheating risk in buildings. This approach makes it possible to investigate how much microscale effects (e.g. buildings, trees e.g. roads) in open space influence the overheating intensity in a building depending on its location within a district. In this context, the question arises how realistic the microscale meteorological simulation is to be used as input for indoor overheating evaluation. In this context, we applied a 3D urban climate model (ENVI-met) and a 1D boundary layer model (HIRVAC) for two urban districts in Germany as meteorological input for an indoor thermal comfort evaluation of two representative buildings. The results demonstrate that ENVI-met simulations without using measured temperature data create unrealistically low diurnal variations in outdoor air temperature despite an overestimated solar irradiance. The implementation to building simulation leads to a significant underestimation of the heat resilience for both buildings and to wrong conclusions about the efficacy of passive heat adaptation measures. In contrast, the HIRVACsimulations show a more realistic representation of the meteorological variables (when measured data is used for calibration) but are not able to resolve urban 3D structures. Our findings point out that an adjusted boundary layer representation in microscale meteorological simulations is crucial to provide meteorological input suitable for realistic spatially resolved indoor overheating analysis.</p></div>","PeriodicalId":52395,"journal":{"name":"City and Environment Interactions","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially resolved indoor overheating evaluation using microscale meteorological simulation as input for building simulation – opportunities and limitations\",\"authors\":\"Christoph Schünemann , Astrid Ziemann , Valeri Goldberg\",\"doi\":\"10.1016/j.cacint.2023.100122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To assess the spatial heat resilience of buildings in urban development we test the suitability of a toolchain approach from microscale meteorological simulations, resolving the spatial influences on local urban climate, to building performance simulations, evaluating the indoor overheating risk in buildings. This approach makes it possible to investigate how much microscale effects (e.g. buildings, trees e.g. roads) in open space influence the overheating intensity in a building depending on its location within a district. In this context, the question arises how realistic the microscale meteorological simulation is to be used as input for indoor overheating evaluation. In this context, we applied a 3D urban climate model (ENVI-met) and a 1D boundary layer model (HIRVAC) for two urban districts in Germany as meteorological input for an indoor thermal comfort evaluation of two representative buildings. The results demonstrate that ENVI-met simulations without using measured temperature data create unrealistically low diurnal variations in outdoor air temperature despite an overestimated solar irradiance. The implementation to building simulation leads to a significant underestimation of the heat resilience for both buildings and to wrong conclusions about the efficacy of passive heat adaptation measures. In contrast, the HIRVACsimulations show a more realistic representation of the meteorological variables (when measured data is used for calibration) but are not able to resolve urban 3D structures. Our findings point out that an adjusted boundary layer representation in microscale meteorological simulations is crucial to provide meteorological input suitable for realistic spatially resolved indoor overheating analysis.</p></div>\",\"PeriodicalId\":52395,\"journal\":{\"name\":\"City and Environment Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"City and Environment Interactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590252023000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"City and Environment Interactions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590252023000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatially resolved indoor overheating evaluation using microscale meteorological simulation as input for building simulation – opportunities and limitations
To assess the spatial heat resilience of buildings in urban development we test the suitability of a toolchain approach from microscale meteorological simulations, resolving the spatial influences on local urban climate, to building performance simulations, evaluating the indoor overheating risk in buildings. This approach makes it possible to investigate how much microscale effects (e.g. buildings, trees e.g. roads) in open space influence the overheating intensity in a building depending on its location within a district. In this context, the question arises how realistic the microscale meteorological simulation is to be used as input for indoor overheating evaluation. In this context, we applied a 3D urban climate model (ENVI-met) and a 1D boundary layer model (HIRVAC) for two urban districts in Germany as meteorological input for an indoor thermal comfort evaluation of two representative buildings. The results demonstrate that ENVI-met simulations without using measured temperature data create unrealistically low diurnal variations in outdoor air temperature despite an overestimated solar irradiance. The implementation to building simulation leads to a significant underestimation of the heat resilience for both buildings and to wrong conclusions about the efficacy of passive heat adaptation measures. In contrast, the HIRVACsimulations show a more realistic representation of the meteorological variables (when measured data is used for calibration) but are not able to resolve urban 3D structures. Our findings point out that an adjusted boundary layer representation in microscale meteorological simulations is crucial to provide meteorological input suitable for realistic spatially resolved indoor overheating analysis.