基于混合嵌入变压器网络的Botnet DGA域名分类

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-08-28 DOI:10.1016/j.bdr.2023.100395
Ling Ding , Peng Du , Haiwei Hou , Jian Zhang , Di Jin , Shifei Ding
{"title":"基于混合嵌入变压器网络的Botnet DGA域名分类","authors":"Ling Ding ,&nbsp;Peng Du ,&nbsp;Haiwei Hou ,&nbsp;Jian Zhang ,&nbsp;Di Jin ,&nbsp;Shifei Ding","doi":"10.1016/j.bdr.2023.100395","DOIUrl":null,"url":null,"abstract":"<div><p><span>One of the severest threats to cyber security is botnet, which typically uses domain names generated by Domain Generation Algorithms (DGAs) to communicate with their Command and Control (C&amp;C) infrastructure. </span>DGA detection<span> and classification play an important role of assisting cyber security researchers to detect botnet C&amp;C servers. However, many of the existing DGA detection models only focus on single scale word embedding<span> method, and very few models are specially designed to extract more effective features for DGA detection from multiple scales word embedding. To alleviate above questions, first we propose a hybrid word embedding method, which combines character level embedding and bigram level embedding to make full use of the domain names information, and then, we design a deep neural network with hybrid embedding method to distinguish DGA domains from known legitimate domains. Finally, we evaluate our hybrid embedding method and the proposed model on ONIST dataset and compare our methods with several state-of-the-art DGA classification methods.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Botnet DGA Domain Name Classification Using Transformer Network with Hybrid Embedding\",\"authors\":\"Ling Ding ,&nbsp;Peng Du ,&nbsp;Haiwei Hou ,&nbsp;Jian Zhang ,&nbsp;Di Jin ,&nbsp;Shifei Ding\",\"doi\":\"10.1016/j.bdr.2023.100395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>One of the severest threats to cyber security is botnet, which typically uses domain names generated by Domain Generation Algorithms (DGAs) to communicate with their Command and Control (C&amp;C) infrastructure. </span>DGA detection<span> and classification play an important role of assisting cyber security researchers to detect botnet C&amp;C servers. However, many of the existing DGA detection models only focus on single scale word embedding<span> method, and very few models are specially designed to extract more effective features for DGA detection from multiple scales word embedding. To alleviate above questions, first we propose a hybrid word embedding method, which combines character level embedding and bigram level embedding to make full use of the domain names information, and then, we design a deep neural network with hybrid embedding method to distinguish DGA domains from known legitimate domains. Finally, we evaluate our hybrid embedding method and the proposed model on ONIST dataset and compare our methods with several state-of-the-art DGA classification methods.</span></span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221457962300028X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221457962300028X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

网络安全面临的最严重威胁之一是僵尸网络,它通常使用域生成算法(DGA)生成的域名与其指挥与控制(C&;C)基础设施进行通信。DGA检测和分类在协助网络安全研究人员检测僵尸网络C&;C服务器。然而,现有的DGA检测模型大多只关注单尺度词嵌入方法,很少有模型专门设计用于从多尺度词嵌入中提取更有效的DGA特征。为了缓解上述问题,我们首先提出了一种混合单词嵌入方法,该方法将字符级嵌入和双字符级嵌入相结合,以充分利用域名信息,然后,我们设计了一种具有混合嵌入方法的深度神经网络,以区分DGA域和已知合法域。最后,我们在ONIST数据集上评估了我们的混合嵌入方法和所提出的模型,并将我们的方法与几种最先进的DGA分类方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Botnet DGA Domain Name Classification Using Transformer Network with Hybrid Embedding

One of the severest threats to cyber security is botnet, which typically uses domain names generated by Domain Generation Algorithms (DGAs) to communicate with their Command and Control (C&C) infrastructure. DGA detection and classification play an important role of assisting cyber security researchers to detect botnet C&C servers. However, many of the existing DGA detection models only focus on single scale word embedding method, and very few models are specially designed to extract more effective features for DGA detection from multiple scales word embedding. To alleviate above questions, first we propose a hybrid word embedding method, which combines character level embedding and bigram level embedding to make full use of the domain names information, and then, we design a deep neural network with hybrid embedding method to distinguish DGA domains from known legitimate domains. Finally, we evaluate our hybrid embedding method and the proposed model on ONIST dataset and compare our methods with several state-of-the-art DGA classification methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1