{"title":"面向层面情感分析的并行融合图卷积网络","authors":"Yuxin Wu, Guofeng Deng","doi":"10.1016/j.bdr.2023.100378","DOIUrl":null,"url":null,"abstract":"<div><p>Sentiment analysis<span> has always been an important basic task in the NLP<span> field. Recently, graph convolutional networks (GCNs) have been widely used in aspect-level sentiment analysis. Because GCNs have good aggregation effects, every node can contain neighboring node information. However, in previous studies, most models used only a single GCN to learn contextual information. The GCN relies on the construction method of the graph, and a single GCN will cause the model to focus on a certain relationship of nodes that depends on the construction method and ignore other information. In addition, when the GCN aggregates node information, it cannot determine whether the aggregated information is useful, so it will inevitably introduce noise. We propose a model that fuses two parallel GCNs to learn different relational features between sentences at the same time, and we add a gate mechanism to the GCN to filter the noise introduced by the GCN when aggregating information. Finally, we validate our model on public datasets, and the experiments show that compared to state-of-the-art models, our model performs better.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parallel Fusion Graph Convolutional Network for Aspect-Level Sentiment Analysis\",\"authors\":\"Yuxin Wu, Guofeng Deng\",\"doi\":\"10.1016/j.bdr.2023.100378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sentiment analysis<span> has always been an important basic task in the NLP<span> field. Recently, graph convolutional networks (GCNs) have been widely used in aspect-level sentiment analysis. Because GCNs have good aggregation effects, every node can contain neighboring node information. However, in previous studies, most models used only a single GCN to learn contextual information. The GCN relies on the construction method of the graph, and a single GCN will cause the model to focus on a certain relationship of nodes that depends on the construction method and ignore other information. In addition, when the GCN aggregates node information, it cannot determine whether the aggregated information is useful, so it will inevitably introduce noise. We propose a model that fuses two parallel GCNs to learn different relational features between sentences at the same time, and we add a gate mechanism to the GCN to filter the noise introduced by the GCN when aggregating information. Finally, we validate our model on public datasets, and the experiments show that compared to state-of-the-art models, our model performs better.</span></span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579623000114\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579623000114","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Parallel Fusion Graph Convolutional Network for Aspect-Level Sentiment Analysis
Sentiment analysis has always been an important basic task in the NLP field. Recently, graph convolutional networks (GCNs) have been widely used in aspect-level sentiment analysis. Because GCNs have good aggregation effects, every node can contain neighboring node information. However, in previous studies, most models used only a single GCN to learn contextual information. The GCN relies on the construction method of the graph, and a single GCN will cause the model to focus on a certain relationship of nodes that depends on the construction method and ignore other information. In addition, when the GCN aggregates node information, it cannot determine whether the aggregated information is useful, so it will inevitably introduce noise. We propose a model that fuses two parallel GCNs to learn different relational features between sentences at the same time, and we add a gate mechanism to the GCN to filter the noise introduced by the GCN when aggregating information. Finally, we validate our model on public datasets, and the experiments show that compared to state-of-the-art models, our model performs better.