Lucía Blanco, Oscar Martínez-Rico, Ángeles Domínguez, Begoña González
{"title":"用氯化胆碱改性壳聚糖微球、尿素、深共熔溶剂和FeO去除水溶液中的酸性蓝80","authors":"Lucía Blanco, Oscar Martínez-Rico, Ángeles Domínguez, Begoña González","doi":"10.1016/j.wri.2022.100195","DOIUrl":null,"url":null,"abstract":"<div><p>An alternative chitosan-based adsorbent modified by impregnation with deep eutectic solvent (DES) choline-chloride:urea at a molar ratio 1:2 proved efficient removal of the anthraquinone dye Acid Blue 80 (AB80) from aqueous solutions, and offered enhanced adsorption capacity compared to the starting materials. The adsorption was mainly affected by initial AB80 concentration, adsorbent dosage, contact time, and slightly influenced by temperature (25–45 °C), and pH (3.5–10). The pseudo-second-order kinetic model fitted the experimental data, and pseudo-first order model fitted as well at the highest AB80 concentration, 250 mg/L. The experimental data agreed with the Langmuir isotherm model, with a maximum adsorption capacity of 61.64 mg/g at 35 °C. The process was exothermic above 100 mg/L of dye and spontaneous up to 200 mg/L (T < 35 °C). The adsorbent could be reused without further treatment at least 5 times providing ≥40% removal, whereas the dye could be efficiently recovered by NaOH desorption. Electrostatic interactions as well as physisorption could explain the adsorption behavior.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"29 ","pages":"Article 100195"},"PeriodicalIF":4.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Removal of Acid Blue 80 from aqueous solutions using chitosan-based beads modified with choline chloride:urea Deep Eutectic Solvent and FeO\",\"authors\":\"Lucía Blanco, Oscar Martínez-Rico, Ángeles Domínguez, Begoña González\",\"doi\":\"10.1016/j.wri.2022.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An alternative chitosan-based adsorbent modified by impregnation with deep eutectic solvent (DES) choline-chloride:urea at a molar ratio 1:2 proved efficient removal of the anthraquinone dye Acid Blue 80 (AB80) from aqueous solutions, and offered enhanced adsorption capacity compared to the starting materials. The adsorption was mainly affected by initial AB80 concentration, adsorbent dosage, contact time, and slightly influenced by temperature (25–45 °C), and pH (3.5–10). The pseudo-second-order kinetic model fitted the experimental data, and pseudo-first order model fitted as well at the highest AB80 concentration, 250 mg/L. The experimental data agreed with the Langmuir isotherm model, with a maximum adsorption capacity of 61.64 mg/g at 35 °C. The process was exothermic above 100 mg/L of dye and spontaneous up to 200 mg/L (T < 35 °C). The adsorbent could be reused without further treatment at least 5 times providing ≥40% removal, whereas the dye could be efficiently recovered by NaOH desorption. Electrostatic interactions as well as physisorption could explain the adsorption behavior.</p></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"29 \",\"pages\":\"Article 100195\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000282\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371722000282","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Removal of Acid Blue 80 from aqueous solutions using chitosan-based beads modified with choline chloride:urea Deep Eutectic Solvent and FeO
An alternative chitosan-based adsorbent modified by impregnation with deep eutectic solvent (DES) choline-chloride:urea at a molar ratio 1:2 proved efficient removal of the anthraquinone dye Acid Blue 80 (AB80) from aqueous solutions, and offered enhanced adsorption capacity compared to the starting materials. The adsorption was mainly affected by initial AB80 concentration, adsorbent dosage, contact time, and slightly influenced by temperature (25–45 °C), and pH (3.5–10). The pseudo-second-order kinetic model fitted the experimental data, and pseudo-first order model fitted as well at the highest AB80 concentration, 250 mg/L. The experimental data agreed with the Langmuir isotherm model, with a maximum adsorption capacity of 61.64 mg/g at 35 °C. The process was exothermic above 100 mg/L of dye and spontaneous up to 200 mg/L (T < 35 °C). The adsorbent could be reused without further treatment at least 5 times providing ≥40% removal, whereas the dye could be efficiently recovered by NaOH desorption. Electrostatic interactions as well as physisorption could explain the adsorption behavior.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry