锂膜流动电容去离子(Li-MFCDI)从盐水中回收锂——概念验证

IF 4.9 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Letters Pub Date : 2023-08-12 DOI:10.1016/j.memlet.2023.100059
H.M. Saif, J.G. Crespo, S. Pawlowski
{"title":"锂膜流动电容去离子(Li-MFCDI)从盐水中回收锂——概念验证","authors":"H.M. Saif,&nbsp;J.G. Crespo,&nbsp;S. Pawlowski","doi":"10.1016/j.memlet.2023.100059","DOIUrl":null,"url":null,"abstract":"<div><p>The demand of lithium for electric vehicles and energy storage devices is increasing rapidly, thus new sources of lithium (such as seawater and natural or industrial brines), as well as sustainable methods for its recovery, will need to be explored/developed soon. This work presents a novel electromembrane process, called Lithium Membrane Flow Capacitive Deionization (Li-MFCDI), which was tested to recover lithium from a synthetic geothermal brine containing a much higher mass concentration of sodium than lithium (more than 650 times). Specifically, a ceramic lithium-selective membrane was integrated into a flow capacitive deionization (FCDI) cell, which was specifically designed, and 3D printed, to allow simultaneous charging and regeneration of the employed flow electrodes. Despite the extremely high Na<sup>+</sup>/Li<sup>+</sup> mass ratio in the feed stream, 99.98% of the sodium was rejected and the process selectivity for lithium over other monovalent cations was 141 ± 5.85 for Li<sup>+</sup>/Na<sup>+</sup> and 46 ± 1.46 for Li<sup>+</sup>/K<sup>+</sup>. The Li-MFCDI process exhibited a stable behaviour over a 7-day test period, and the estimated energy consumption was 16.70 ± 1.63 kWh/kg of Li<sup>+</sup> recovered in the draw solution. These results demonstrate promising potential of the Li-MFCDI for the sustainable lithium recovery from saline streams.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium recovery from brines by lithium membrane flow capacitive deionization (Li-MFCDI) – A proof of concept\",\"authors\":\"H.M. Saif,&nbsp;J.G. Crespo,&nbsp;S. Pawlowski\",\"doi\":\"10.1016/j.memlet.2023.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The demand of lithium for electric vehicles and energy storage devices is increasing rapidly, thus new sources of lithium (such as seawater and natural or industrial brines), as well as sustainable methods for its recovery, will need to be explored/developed soon. This work presents a novel electromembrane process, called Lithium Membrane Flow Capacitive Deionization (Li-MFCDI), which was tested to recover lithium from a synthetic geothermal brine containing a much higher mass concentration of sodium than lithium (more than 650 times). Specifically, a ceramic lithium-selective membrane was integrated into a flow capacitive deionization (FCDI) cell, which was specifically designed, and 3D printed, to allow simultaneous charging and regeneration of the employed flow electrodes. Despite the extremely high Na<sup>+</sup>/Li<sup>+</sup> mass ratio in the feed stream, 99.98% of the sodium was rejected and the process selectivity for lithium over other monovalent cations was 141 ± 5.85 for Li<sup>+</sup>/Na<sup>+</sup> and 46 ± 1.46 for Li<sup>+</sup>/K<sup>+</sup>. The Li-MFCDI process exhibited a stable behaviour over a 7-day test period, and the estimated energy consumption was 16.70 ± 1.63 kWh/kg of Li<sup>+</sup> recovered in the draw solution. These results demonstrate promising potential of the Li-MFCDI for the sustainable lithium recovery from saline streams.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421223000235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421223000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车和储能设备对锂的需求正在迅速增长,因此需要尽快探索/开发新的锂来源(如海水和天然或工业盐水)以及可持续的回收方法。这项工作提出了一种新的电膜工艺,称为锂膜流动电容去离子(Li-MFCDI),该工艺被测试用于从合成地热盐水中回收锂,其中钠的质量浓度远高于锂(超过650倍)。具体而言,将陶瓷锂选择膜集成到流动电容去离子(FCDI)电池中,该电池经过专门设计并3D打印,以允许对所使用的流动电极同时充电和再生。尽管进料流中Na+/Li+的质量比极高,但仍有99.98%的钠被截留,锂相对于其他单价阳离子的工艺选择性为:Li+/Na+为141±5.85,Li+/K+为46±1.46。Li-MFCDI工艺在7天的试验期内表现出稳定的性能,在提取溶液中回收的Li+的估计能耗为16.70±1.63kWh/kg。这些结果证明了Li-MFCDI在从盐水流中可持续回收锂方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lithium recovery from brines by lithium membrane flow capacitive deionization (Li-MFCDI) – A proof of concept

The demand of lithium for electric vehicles and energy storage devices is increasing rapidly, thus new sources of lithium (such as seawater and natural or industrial brines), as well as sustainable methods for its recovery, will need to be explored/developed soon. This work presents a novel electromembrane process, called Lithium Membrane Flow Capacitive Deionization (Li-MFCDI), which was tested to recover lithium from a synthetic geothermal brine containing a much higher mass concentration of sodium than lithium (more than 650 times). Specifically, a ceramic lithium-selective membrane was integrated into a flow capacitive deionization (FCDI) cell, which was specifically designed, and 3D printed, to allow simultaneous charging and regeneration of the employed flow electrodes. Despite the extremely high Na+/Li+ mass ratio in the feed stream, 99.98% of the sodium was rejected and the process selectivity for lithium over other monovalent cations was 141 ± 5.85 for Li+/Na+ and 46 ± 1.46 for Li+/K+. The Li-MFCDI process exhibited a stable behaviour over a 7-day test period, and the estimated energy consumption was 16.70 ± 1.63 kWh/kg of Li+ recovered in the draw solution. These results demonstrate promising potential of the Li-MFCDI for the sustainable lithium recovery from saline streams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
The solution-diffusion model: “Rumors of my death have been exaggerated” Incorporation of polyzwitterions in superabsorbent network membranes for enhanced saltwater absorption and retention Polyvinylidene fluoride-alkali lignin blend: A new candidate for membranes development Conquering surfactant-induced partial wetting of commercial membrane in membrane distillation through in-situ water flushing Desalination of complex saline waters: sulfonated pentablock copolymer pervaporation membranes do not fail when exposed to scalants and surfactants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1