基于大规模交通模拟的全电动城市私家车交通充电需求时空预测

Florian Straub , Otto Maier , Dietmar Göhlich , Yuan Zou
{"title":"基于大规模交通模拟的全电动城市私家车交通充电需求时空预测","authors":"Florian Straub ,&nbsp;Otto Maier ,&nbsp;Dietmar Göhlich ,&nbsp;Yuan Zou","doi":"10.1016/j.geits.2022.100039","DOIUrl":null,"url":null,"abstract":"<div><p>To support power grid operators to detect and evaluate potential power grid congestions due to the electrification of urban private cars, accurate models are needed to determine the charging energy and power demand of battery electric vehicles (BEVs) with high spatial and temporal resolution. Typically, e-mobility traffic simulations are used for this purpose. In particular, activity-based mobility models are used because they individually model the activity and travel patterns of each person in the considered geographical area. In addition to inaccuracies in determining the spatial distribution of BEV charging demand, one main limitation of the activity-based models proposed in the literature is that they rely on data describing traffic flow in the considered area. However, these data are not available for most places in the world. Therefore, this paper proposes a novel approach to develop an activity-based model that overcomes the spatial limitations and does not require traffic flow data as an input parameter. Instead, a route assignment procedure assigns a destination to each BEV trip based on the evaluation of all possible destinations. The basis of this evaluation is the travel distance and speed between the origin of the trip and the destination, as well as the car-access attractiveness and the availability of parking spots at the destinations.</p><p>The applicability of this model is demonstrated for the urban area of Berlin, Germany, and its 448 sub-districts. For each district in Berlin, both the required daily BEV charging energy demand and the power demand are determined. In addition, the load shifting potential is investigated for an exemplary district. The results show that peak power demand can be reduced by up to 31.7% in comparison to uncontrolled charging.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"2 1","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Forecasting the spatial and temporal charging demand of fully electrified urban private car transportation based on large-scale traffic simulation\",\"authors\":\"Florian Straub ,&nbsp;Otto Maier ,&nbsp;Dietmar Göhlich ,&nbsp;Yuan Zou\",\"doi\":\"10.1016/j.geits.2022.100039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To support power grid operators to detect and evaluate potential power grid congestions due to the electrification of urban private cars, accurate models are needed to determine the charging energy and power demand of battery electric vehicles (BEVs) with high spatial and temporal resolution. Typically, e-mobility traffic simulations are used for this purpose. In particular, activity-based mobility models are used because they individually model the activity and travel patterns of each person in the considered geographical area. In addition to inaccuracies in determining the spatial distribution of BEV charging demand, one main limitation of the activity-based models proposed in the literature is that they rely on data describing traffic flow in the considered area. However, these data are not available for most places in the world. Therefore, this paper proposes a novel approach to develop an activity-based model that overcomes the spatial limitations and does not require traffic flow data as an input parameter. Instead, a route assignment procedure assigns a destination to each BEV trip based on the evaluation of all possible destinations. The basis of this evaluation is the travel distance and speed between the origin of the trip and the destination, as well as the car-access attractiveness and the availability of parking spots at the destinations.</p><p>The applicability of this model is demonstrated for the urban area of Berlin, Germany, and its 448 sub-districts. For each district in Berlin, both the required daily BEV charging energy demand and the power demand are determined. In addition, the load shifting potential is investigated for an exemplary district. The results show that peak power demand can be reduced by up to 31.7% in comparison to uncontrolled charging.</p></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"2 1\",\"pages\":\"Article 100039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153722000391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153722000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了支持电网运营商检测和评估由于城市私家车电动化而导致的潜在电网堵塞,需要准确的模型来确定具有高空间和时间分辨率的电池电动汽车(BEV)的充电能量和电力需求。通常,电子交通模拟用于此目的。特别是,使用基于活动的流动模型是因为它们分别对所考虑的地理区域中每个人的活动和旅行模式进行建模。除了确定纯电动汽车充电需求的空间分布不准确之外,文献中提出的基于活动的模型的一个主要局限性是,它们依赖于描述所考虑区域内交通流量的数据。然而,这些数据并不适用于世界上大多数地方。因此,本文提出了一种新的方法来开发一个基于活动的模型,该模型克服了空间限制,不需要交通流量数据作为输入参数。相反,路线分配程序根据对所有可能目的地的评估,为每个纯电动汽车行程分配一个目的地。该评估的基础是旅行起点和目的地之间的旅行距离和速度,以及汽车通道的吸引力和目的地停车位的可用性。该模型适用于德国柏林市区及其448个街道。对于柏林的每个地区,都确定了所需的每日纯电动汽车充电能源需求和电力需求。此外,还对一个示范区的负荷转移潜力进行了研究。结果表明,与不受控制的充电相比,峰值功率需求可以减少31.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting the spatial and temporal charging demand of fully electrified urban private car transportation based on large-scale traffic simulation

To support power grid operators to detect and evaluate potential power grid congestions due to the electrification of urban private cars, accurate models are needed to determine the charging energy and power demand of battery electric vehicles (BEVs) with high spatial and temporal resolution. Typically, e-mobility traffic simulations are used for this purpose. In particular, activity-based mobility models are used because they individually model the activity and travel patterns of each person in the considered geographical area. In addition to inaccuracies in determining the spatial distribution of BEV charging demand, one main limitation of the activity-based models proposed in the literature is that they rely on data describing traffic flow in the considered area. However, these data are not available for most places in the world. Therefore, this paper proposes a novel approach to develop an activity-based model that overcomes the spatial limitations and does not require traffic flow data as an input parameter. Instead, a route assignment procedure assigns a destination to each BEV trip based on the evaluation of all possible destinations. The basis of this evaluation is the travel distance and speed between the origin of the trip and the destination, as well as the car-access attractiveness and the availability of parking spots at the destinations.

The applicability of this model is demonstrated for the urban area of Berlin, Germany, and its 448 sub-districts. For each district in Berlin, both the required daily BEV charging energy demand and the power demand are determined. In addition, the load shifting potential is investigated for an exemplary district. The results show that peak power demand can be reduced by up to 31.7% in comparison to uncontrolled charging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
Unveiling the power of data in bidirectional charging: A qualitative stakeholder approach exploring the potential and challenges of V2G A comprehensive overview of the alignment between platoon control approaches and clustering strategies Co-estimation of state-of-charge and state-of-temperature for large-format lithium-ion batteries based on a novel electrothermal model Towards vehicle electrification: A mathematical prediction of battery electric vehicle ownership growth, the case of Turkey A review on reinforcement learning-based highway autonomous vehicle control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1