质子交换膜燃料电池模型参数估计的多重学习神经网络算法

Yiying Zhang , Chao Huang , Hailong Huang , Jingda Wu
{"title":"质子交换膜燃料电池模型参数估计的多重学习神经网络算法","authors":"Yiying Zhang ,&nbsp;Chao Huang ,&nbsp;Hailong Huang ,&nbsp;Jingda Wu","doi":"10.1016/j.geits.2022.100040","DOIUrl":null,"url":null,"abstract":"<div><p>Extracting the unknown parameters of proton exchange membrane fuel cell (PEMFC) models accurately is vital to design, control, and simulate the actual PEMFC. In order to extract the unknown parameters of PEMFC models precisely, this work presents an improved version of neural network algorithm (NNA), namely the multiple learning neural network algorithm (MLNNA). In MLNNA, six learning strategies are designed based on the created local elite archive and global elite archive to balance exploration and exploitation of MLNNA. To evaluate the performance of MLNNA, MLNNA is first employed to solve the well-known CEC 2015 test suite. Experimental results demonstrate that MLNNA outperforms NNA on most test functions. Then, MLNNA is used to extract the parameters of two PEMFC models including the BCS 500 ​W PEMFC model and the NedStack SP6 PEMFC model. Experimental results support the superiority of MLNNA in the parameter estimation of PEMFC models by comparing it with 10 powerful optimization algorithms.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"2 1","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multiple learning neural network algorithm for parameter estimation of proton exchange membrane fuel cell models\",\"authors\":\"Yiying Zhang ,&nbsp;Chao Huang ,&nbsp;Hailong Huang ,&nbsp;Jingda Wu\",\"doi\":\"10.1016/j.geits.2022.100040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extracting the unknown parameters of proton exchange membrane fuel cell (PEMFC) models accurately is vital to design, control, and simulate the actual PEMFC. In order to extract the unknown parameters of PEMFC models precisely, this work presents an improved version of neural network algorithm (NNA), namely the multiple learning neural network algorithm (MLNNA). In MLNNA, six learning strategies are designed based on the created local elite archive and global elite archive to balance exploration and exploitation of MLNNA. To evaluate the performance of MLNNA, MLNNA is first employed to solve the well-known CEC 2015 test suite. Experimental results demonstrate that MLNNA outperforms NNA on most test functions. Then, MLNNA is used to extract the parameters of two PEMFC models including the BCS 500 ​W PEMFC model and the NedStack SP6 PEMFC model. Experimental results support the superiority of MLNNA in the parameter estimation of PEMFC models by comparing it with 10 powerful optimization algorithms.</p></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"2 1\",\"pages\":\"Article 100040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153722000408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153722000408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

准确提取质子交换膜燃料电池(PEMFC)模型的未知参数对于设计、控制和模拟实际的PEMFC至关重要。为了准确提取PEMFC模型的未知参数,本文提出了一种改进的神经网络算法,即多重学习神经网络算法。在MLNNA中,基于创建的本地精英档案和全球精英档案设计了六种学习策略,以平衡MLNNA的探索和利用。为了评估MLNNA的性能,首先使用MLNNA来解决众所周知的CEC 2015测试套件。实验结果表明,MLNNA在大多数测试函数上都优于NNA。然后,使用MLNNA提取包括BCS500在内的两个PEMFC模型的参数​W PEMFC模型和NedStack SP6 PEMFC模型。通过与10种强大的优化算法的比较,实验结果证明了MLNNA在PEMFC模型参数估计方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple learning neural network algorithm for parameter estimation of proton exchange membrane fuel cell models

Extracting the unknown parameters of proton exchange membrane fuel cell (PEMFC) models accurately is vital to design, control, and simulate the actual PEMFC. In order to extract the unknown parameters of PEMFC models precisely, this work presents an improved version of neural network algorithm (NNA), namely the multiple learning neural network algorithm (MLNNA). In MLNNA, six learning strategies are designed based on the created local elite archive and global elite archive to balance exploration and exploitation of MLNNA. To evaluate the performance of MLNNA, MLNNA is first employed to solve the well-known CEC 2015 test suite. Experimental results demonstrate that MLNNA outperforms NNA on most test functions. Then, MLNNA is used to extract the parameters of two PEMFC models including the BCS 500 ​W PEMFC model and the NedStack SP6 PEMFC model. Experimental results support the superiority of MLNNA in the parameter estimation of PEMFC models by comparing it with 10 powerful optimization algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
Unveiling the power of data in bidirectional charging: A qualitative stakeholder approach exploring the potential and challenges of V2G A comprehensive overview of the alignment between platoon control approaches and clustering strategies Co-estimation of state-of-charge and state-of-temperature for large-format lithium-ion batteries based on a novel electrothermal model Towards vehicle electrification: A mathematical prediction of battery electric vehicle ownership growth, the case of Turkey A review on reinforcement learning-based highway autonomous vehicle control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1