珠江口盆地构造-热演化史与油气潜力:来自井眼磷灰石裂变径迹热年代学的启示

IF 4.6 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY China Geology Pub Date : 2023-07-01 DOI:10.31035/cg2022055
Xiao-yin Tang , Shu-chun Yang , Sheng-biao Hu
{"title":"珠江口盆地构造-热演化史与油气潜力:来自井眼磷灰石裂变径迹热年代学的启示","authors":"Xiao-yin Tang ,&nbsp;Shu-chun Yang ,&nbsp;Sheng-biao Hu","doi":"10.31035/cg2022055","DOIUrl":null,"url":null,"abstract":"<div><p>The Pearl River Mouth Basin (PRMB) is one of the most petroliferous basins on the northern margin of the South China Sea. Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history. Our investigations in this study are based on apatite fission-track (AFT) thermochronology analysis of 12 cutting samples from 4 boreholes. Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution. Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene. The cooling events occurred approximately in the Late Eocene, early Oligocene, and the Late Miocene, possibly attributed to the Zhuqiong II Event, Nanhai Event, and Dongsha Event, respectively. The erosion amount during the first cooling stage is roughly estimated to be about 455–712 m, with an erosion rate of 0.08–0.12 mm/a. The second erosion-driven cooling is stronger than the first one, with an erosion amount of about 747–814 m and an erosion rate between about 0.13–0.21 mm/a. The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m, which is speculative due to the possible influence of the magmatic activity.</p><p>©2023 China Geology Editorial Office.</p></div>","PeriodicalId":45329,"journal":{"name":"China Geology","volume":"6 3","pages":"Pages 429-442"},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin, northern South China Sea: Insights from borehole apatite fission-track thermochronology\",\"authors\":\"Xiao-yin Tang ,&nbsp;Shu-chun Yang ,&nbsp;Sheng-biao Hu\",\"doi\":\"10.31035/cg2022055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Pearl River Mouth Basin (PRMB) is one of the most petroliferous basins on the northern margin of the South China Sea. Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history. Our investigations in this study are based on apatite fission-track (AFT) thermochronology analysis of 12 cutting samples from 4 boreholes. Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution. Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene. The cooling events occurred approximately in the Late Eocene, early Oligocene, and the Late Miocene, possibly attributed to the Zhuqiong II Event, Nanhai Event, and Dongsha Event, respectively. The erosion amount during the first cooling stage is roughly estimated to be about 455–712 m, with an erosion rate of 0.08–0.12 mm/a. The second erosion-driven cooling is stronger than the first one, with an erosion amount of about 747–814 m and an erosion rate between about 0.13–0.21 mm/a. The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m, which is speculative due to the possible influence of the magmatic activity.</p><p>©2023 China Geology Editorial Office.</p></div>\",\"PeriodicalId\":45329,\"journal\":{\"name\":\"China Geology\",\"volume\":\"6 3\",\"pages\":\"Pages 429-442\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096519223014465\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096519223014465","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

珠江口盆地(PRMB)是南海北部边缘含油气最多的盆地之一。了解PRMB的热史对于理解其构造演化和揭示其研究不足的烃源岩成熟史具有重要意义。我们在本研究中的调查是基于对4个钻孔的12个切割样品的磷灰石裂变轨道(AFT)热年代学分析。AFT年龄和长度数据都表明,PRMB经历了相当复杂的热演化。热历史建模结果揭示了自中始新世早期以来,四个连续的加热事件被三个冷却阶段分开。冷却事件大致发生在始新世晚期、渐新世早期和中新世晚期,可能分别与朱琼二期事件、南海事件和东沙事件有关。第一冷却阶段的侵蚀量大致估计约为455–712 m,侵蚀率为0.08–0.12 mm/a。第二次侵蚀驱动冷却比第一次更强,侵蚀量约为747–814 m,侵蚀速率约为0.13–0.21 mm/a。计算出的与第三次冷却事件有关的侵蚀量在800米至3419米之间,由于岩浆活动的可能影响,这是推测性的。©2023中国地质编辑部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin, northern South China Sea: Insights from borehole apatite fission-track thermochronology

The Pearl River Mouth Basin (PRMB) is one of the most petroliferous basins on the northern margin of the South China Sea. Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history. Our investigations in this study are based on apatite fission-track (AFT) thermochronology analysis of 12 cutting samples from 4 boreholes. Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution. Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene. The cooling events occurred approximately in the Late Eocene, early Oligocene, and the Late Miocene, possibly attributed to the Zhuqiong II Event, Nanhai Event, and Dongsha Event, respectively. The erosion amount during the first cooling stage is roughly estimated to be about 455–712 m, with an erosion rate of 0.08–0.12 mm/a. The second erosion-driven cooling is stronger than the first one, with an erosion amount of about 747–814 m and an erosion rate between about 0.13–0.21 mm/a. The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m, which is speculative due to the possible influence of the magmatic activity.

©2023 China Geology Editorial Office.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
China Geology
China Geology GEOLOGY-
CiteScore
7.80
自引率
11.10%
发文量
275
审稿时长
16 weeks
期刊最新文献
U-Pb dating of monazite in the Bainiuchang silver polymetallic deposit, Yunnan Province, and its limitation on Mesozoic mineralization Muscovite 40Ar/39Ar isotopic dating of pegmatite veins in the Bieyesamas rare metal deposit in the Altay Mountain, Xinjiang, northwestern China Optimization of water-urban-agricultural-ecological land use pattern: A case study of Guanzhong Basin in the southern Loess Plateau of Shaanxi Province, China Planning and construction of Xiong'an New Area (city of over 5 million people): Contributions of China's geologists and urban geology Two stages power generation test of the hot dry rock exploration and production demonstration project in the Gonghe Basin, northeastern Qinghai-Tibet plateau, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1