{"title":"促进碱性氢析出的多相界面的构建","authors":"Renzheng Jiang, Jinfeng Zhang, Yingpeng Xie, Liyun Wu, Shenglin Sun, Ping Yu, Enlei Zhang, Guosheng Wang","doi":"10.1016/j.recm.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Alkaline hydrogen evolution reaction (HER) is suppressed by the water dissociation, leading to more sluggish kinetics than acidic HER. Developing multifunction catalysts via constructing heterogeneous interfaces is a feasible tactic to accelerate the alkaline HER. Herein, NiO coupled with Ni and Mo<em><sub>x</sub></em>N (NMN) nanorods were prepared via a hydro-thermal synthesis combined with a thermal decomposition under ammonia atmosphere. The low crystalline NMN nanorods are rich in heterointerfaces, and have sufficient high active sites for HER. The synergistic effect between NiO and Ni-Mo<em><sub>x</sub></em>N promotes the water dissociation the hydrogen adsorption, and the charge transfer, contributing to excellent alkaline HER activity. The overpotential on NMN is only 36 and 150 mV for the current density of 10 and 300 mA cm<sup>−2</sup>, respectively, and the Tafel slope is 48 mV/dec, demonstrating a superior performance for alkaline HER, which is even comparable to the commercial electrocatalysts.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"2 4","pages":"Pages 253-261"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of multiple heterogeneous interfaces boosting alkaline hydrogen evolution\",\"authors\":\"Renzheng Jiang, Jinfeng Zhang, Yingpeng Xie, Liyun Wu, Shenglin Sun, Ping Yu, Enlei Zhang, Guosheng Wang\",\"doi\":\"10.1016/j.recm.2023.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alkaline hydrogen evolution reaction (HER) is suppressed by the water dissociation, leading to more sluggish kinetics than acidic HER. Developing multifunction catalysts via constructing heterogeneous interfaces is a feasible tactic to accelerate the alkaline HER. Herein, NiO coupled with Ni and Mo<em><sub>x</sub></em>N (NMN) nanorods were prepared via a hydro-thermal synthesis combined with a thermal decomposition under ammonia atmosphere. The low crystalline NMN nanorods are rich in heterointerfaces, and have sufficient high active sites for HER. The synergistic effect between NiO and Ni-Mo<em><sub>x</sub></em>N promotes the water dissociation the hydrogen adsorption, and the charge transfer, contributing to excellent alkaline HER activity. The overpotential on NMN is only 36 and 150 mV for the current density of 10 and 300 mA cm<sup>−2</sup>, respectively, and the Tafel slope is 48 mV/dec, demonstrating a superior performance for alkaline HER, which is even comparable to the commercial electrocatalysts.</p></div>\",\"PeriodicalId\":101081,\"journal\":{\"name\":\"Resources Chemicals and Materials\",\"volume\":\"2 4\",\"pages\":\"Pages 253-261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Chemicals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772443323000338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443323000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
碱性析氢反应(HER)受到水离解的抑制,导致比酸性HER更缓慢的动力学。通过构建多相界面开发多功能催化剂是加速碱性HER的可行策略。本文通过水热合成和氨气氛下的热分解相结合的方法制备了与Ni和MoxN(NMN)纳米棒偶联的NiO。低结晶NMN纳米棒富含异质界面,并具有足够的HER高活性位点。NiO和Ni-MoxN之间的协同作用促进了水的离解、氢的吸附和电荷转移,有助于获得优异的碱性HER活性。当电流密度为10和300 mA cm−2时,NMN上的过电位分别仅为36和150 mV,Tafel斜率为48 mV/dec,表明其对碱性HER具有优异的性能,甚至与商业电催化剂相当。
Construction of multiple heterogeneous interfaces boosting alkaline hydrogen evolution
Alkaline hydrogen evolution reaction (HER) is suppressed by the water dissociation, leading to more sluggish kinetics than acidic HER. Developing multifunction catalysts via constructing heterogeneous interfaces is a feasible tactic to accelerate the alkaline HER. Herein, NiO coupled with Ni and MoxN (NMN) nanorods were prepared via a hydro-thermal synthesis combined with a thermal decomposition under ammonia atmosphere. The low crystalline NMN nanorods are rich in heterointerfaces, and have sufficient high active sites for HER. The synergistic effect between NiO and Ni-MoxN promotes the water dissociation the hydrogen adsorption, and the charge transfer, contributing to excellent alkaline HER activity. The overpotential on NMN is only 36 and 150 mV for the current density of 10 and 300 mA cm−2, respectively, and the Tafel slope is 48 mV/dec, demonstrating a superior performance for alkaline HER, which is even comparable to the commercial electrocatalysts.