Mohammad Azadi Tabar , Abolfazl Dehghan Monfared , Flor Shayegh , Farzad Barzegar , Mohammad Hossein Ghazanfari
{"title":"超气湿和气湿岩石表面:通过接触角分析进行的最新评估","authors":"Mohammad Azadi Tabar , Abolfazl Dehghan Monfared , Flor Shayegh , Farzad Barzegar , Mohammad Hossein Ghazanfari","doi":"10.1016/j.petlm.2021.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem. To this end, this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry. As a preliminary step, advancing, receding, static, and the most stable contact angle terminology are defined. The study is followed by the definition of the contact angle hysteresis effect. The application of surface free energy in the selection of the best gas wet agent is then analyzed. Afterward, the impact of the size-dependent behavior of drop on contact angle is discussed. Finally, a sessile drop experiment is explained to achieve the defined parameters. For future contributions to petroleum industry journals, like this journal, this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"9 1","pages":"Pages 1-7"},"PeriodicalIF":4.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Super gas wet and gas wet rock surface: State of the art evaluation through contact angle analysis\",\"authors\":\"Mohammad Azadi Tabar , Abolfazl Dehghan Monfared , Flor Shayegh , Farzad Barzegar , Mohammad Hossein Ghazanfari\",\"doi\":\"10.1016/j.petlm.2021.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem. To this end, this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry. As a preliminary step, advancing, receding, static, and the most stable contact angle terminology are defined. The study is followed by the definition of the contact angle hysteresis effect. The application of surface free energy in the selection of the best gas wet agent is then analyzed. Afterward, the impact of the size-dependent behavior of drop on contact angle is discussed. Finally, a sessile drop experiment is explained to achieve the defined parameters. For future contributions to petroleum industry journals, like this journal, this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"9 1\",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656121000675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656121000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Super gas wet and gas wet rock surface: State of the art evaluation through contact angle analysis
Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem. To this end, this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry. As a preliminary step, advancing, receding, static, and the most stable contact angle terminology are defined. The study is followed by the definition of the contact angle hysteresis effect. The application of surface free energy in the selection of the best gas wet agent is then analyzed. Afterward, the impact of the size-dependent behavior of drop on contact angle is discussed. Finally, a sessile drop experiment is explained to achieve the defined parameters. For future contributions to petroleum industry journals, like this journal, this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing