Mohammadreza Khalili Tari, Amir Reza Faraji, Alireza Aslani, Rahim Zahedi
{"title":"三维可打印建筑的能量模拟和生命周期评估","authors":"Mohammadreza Khalili Tari, Amir Reza Faraji, Alireza Aslani, Rahim Zahedi","doi":"10.1016/j.clema.2023.100168","DOIUrl":null,"url":null,"abstract":"<div><p>The construction industry plays a key role in the economic development of countries. The industry faces challenges such as high energy consumption, long construction time, high manufacturing costs. 3D printing technology can solve many problems in this industry. The goal of this research is to find suitable materials for the 3D printing of an energy-efficient building with the least environmental impact. Magnesium potassium phosphate cement (MKPC) was selected for this study. In the next step, energy consumption in the building is simulated and different scenarios are considered to optimize energy consumption and reduce environmental impacts. Then, the life cycle assessment is done for the best scenario. Finally, this scenario is compared to the case where portland cement enters the composition. The simulation results show that PCM (phase change materials) has very little effect on reducing the energy consumption of the building. In contrast, insulation has almost halved energy consumption. Magnesium oxide and monopotassium phosphate have a significant share in the environmental effects of concrete walls. By adding 30% by volume of M20 concrete, the environmental impacts are reduced almost 28%.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"7 ","pages":"Article 100168"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Energy simulation and life cycle assessment of a 3D printable building\",\"authors\":\"Mohammadreza Khalili Tari, Amir Reza Faraji, Alireza Aslani, Rahim Zahedi\",\"doi\":\"10.1016/j.clema.2023.100168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The construction industry plays a key role in the economic development of countries. The industry faces challenges such as high energy consumption, long construction time, high manufacturing costs. 3D printing technology can solve many problems in this industry. The goal of this research is to find suitable materials for the 3D printing of an energy-efficient building with the least environmental impact. Magnesium potassium phosphate cement (MKPC) was selected for this study. In the next step, energy consumption in the building is simulated and different scenarios are considered to optimize energy consumption and reduce environmental impacts. Then, the life cycle assessment is done for the best scenario. Finally, this scenario is compared to the case where portland cement enters the composition. The simulation results show that PCM (phase change materials) has very little effect on reducing the energy consumption of the building. In contrast, insulation has almost halved energy consumption. Magnesium oxide and monopotassium phosphate have a significant share in the environmental effects of concrete walls. By adding 30% by volume of M20 concrete, the environmental impacts are reduced almost 28%.</p></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"7 \",\"pages\":\"Article 100168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397623000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397623000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy simulation and life cycle assessment of a 3D printable building
The construction industry plays a key role in the economic development of countries. The industry faces challenges such as high energy consumption, long construction time, high manufacturing costs. 3D printing technology can solve many problems in this industry. The goal of this research is to find suitable materials for the 3D printing of an energy-efficient building with the least environmental impact. Magnesium potassium phosphate cement (MKPC) was selected for this study. In the next step, energy consumption in the building is simulated and different scenarios are considered to optimize energy consumption and reduce environmental impacts. Then, the life cycle assessment is done for the best scenario. Finally, this scenario is compared to the case where portland cement enters the composition. The simulation results show that PCM (phase change materials) has very little effect on reducing the energy consumption of the building. In contrast, insulation has almost halved energy consumption. Magnesium oxide and monopotassium phosphate have a significant share in the environmental effects of concrete walls. By adding 30% by volume of M20 concrete, the environmental impacts are reduced almost 28%.