{"title":"用于生物医学应用的微/纳米结构柔性电子器件","authors":"Yu Wang , Jiahui Guo , Dongyu Xu , Zhuxiao Gu , Yuanjin Zhao","doi":"10.1016/j.bmt.2022.11.013","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible electronics are attracting considerable attention due to their promising performance including conductivity, stain- or pressure-sensing performance, skin-affinity, flexibility, etc. In particular, the structural design has promoted their properties and brought advanced functions, which make them valuable in biomedical applications including health monitoring, therapeutic applications and implantable devices. Herein, a review on the recent progress of flexible electronics with micro-/nano-structures is provided, involving the manufacturing technologies and applications in biomedical fields. Following these two sections, remaining challenges and the perspectives on future directions are also proposed.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"2 ","pages":"Pages 1-14"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Micro-/nano-structured flexible electronics for biomedical applications\",\"authors\":\"Yu Wang , Jiahui Guo , Dongyu Xu , Zhuxiao Gu , Yuanjin Zhao\",\"doi\":\"10.1016/j.bmt.2022.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible electronics are attracting considerable attention due to their promising performance including conductivity, stain- or pressure-sensing performance, skin-affinity, flexibility, etc. In particular, the structural design has promoted their properties and brought advanced functions, which make them valuable in biomedical applications including health monitoring, therapeutic applications and implantable devices. Herein, a review on the recent progress of flexible electronics with micro-/nano-structures is provided, involving the manufacturing technologies and applications in biomedical fields. Following these two sections, remaining challenges and the perspectives on future directions are also proposed.</p></div>\",\"PeriodicalId\":100180,\"journal\":{\"name\":\"Biomedical Technology\",\"volume\":\"2 \",\"pages\":\"Pages 1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949723X22000150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X22000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micro-/nano-structured flexible electronics for biomedical applications
Flexible electronics are attracting considerable attention due to their promising performance including conductivity, stain- or pressure-sensing performance, skin-affinity, flexibility, etc. In particular, the structural design has promoted their properties and brought advanced functions, which make them valuable in biomedical applications including health monitoring, therapeutic applications and implantable devices. Herein, a review on the recent progress of flexible electronics with micro-/nano-structures is provided, involving the manufacturing technologies and applications in biomedical fields. Following these two sections, remaining challenges and the perspectives on future directions are also proposed.