氧还原反应中Pt-Pd双金属异质结构的外延生长

Lian Ying Zhang , Tiantian Zeng , Linwei Zheng , Yanrui Wang , Weiyong Yuan , Mang Niu , Chun Xian Guo , Dapeng Cao , Chang Ming Li
{"title":"氧还原反应中Pt-Pd双金属异质结构的外延生长","authors":"Lian Ying Zhang ,&nbsp;Tiantian Zeng ,&nbsp;Linwei Zheng ,&nbsp;Yanrui Wang ,&nbsp;Weiyong Yuan ,&nbsp;Mang Niu ,&nbsp;Chun Xian Guo ,&nbsp;Dapeng Cao ,&nbsp;Chang Ming Li","doi":"10.1016/j.apmate.2023.100131","DOIUrl":null,"url":null,"abstract":"<div><p>It is of great importance to design highly active and stable electrocatalysts with low Pt loading to improve the sluggish kinetics of oxygen reduction reaction (ORR) for fuel cells. Herein, we report an epitaxial growth of a Pt–Pd bimetallic heterostructure with a Pt loading as low as 8.02 ​wt%. Both experimental studies and theoretical calculations confirm that the heterointerfaces play a major role in charge redistribution, which accelerates electron transfer from Pd to Pt, contributing to downshifting the d-band center of Pd and consequently greatly weakening the O adsorption energy for a critical optimal adsorption configuration of O∗ on the heterointerface. In particular, the adsorbed O∗, an intermediate in a bridge mode between adjacent Pt and Pd atoms, has a relative low adsorption energy, which easily forms H<sub>2</sub>O to escape for releasing the active sites toward ORR. The Pt–Pd heterostructured catalyst presents the highest mass activity of 6.06 A·mg<sup>−1</sup><sub>Pt</sub> among all reported Pt–Pd alloyed or composited catalysts, which is 26.4 times of the sample Pt/C (0.23 A·mg<sup>−1</sup><sub>Pt</sub>). Further, the fuel cell assembled by the electrocatalyst shows a current density of 1.23 ​A·cm<sup>−2</sup> at 0.6 ​V and good stability for over 100 ​h.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction\",\"authors\":\"Lian Ying Zhang ,&nbsp;Tiantian Zeng ,&nbsp;Linwei Zheng ,&nbsp;Yanrui Wang ,&nbsp;Weiyong Yuan ,&nbsp;Mang Niu ,&nbsp;Chun Xian Guo ,&nbsp;Dapeng Cao ,&nbsp;Chang Ming Li\",\"doi\":\"10.1016/j.apmate.2023.100131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is of great importance to design highly active and stable electrocatalysts with low Pt loading to improve the sluggish kinetics of oxygen reduction reaction (ORR) for fuel cells. Herein, we report an epitaxial growth of a Pt–Pd bimetallic heterostructure with a Pt loading as low as 8.02 ​wt%. Both experimental studies and theoretical calculations confirm that the heterointerfaces play a major role in charge redistribution, which accelerates electron transfer from Pd to Pt, contributing to downshifting the d-band center of Pd and consequently greatly weakening the O adsorption energy for a critical optimal adsorption configuration of O∗ on the heterointerface. In particular, the adsorbed O∗, an intermediate in a bridge mode between adjacent Pt and Pd atoms, has a relative low adsorption energy, which easily forms H<sub>2</sub>O to escape for releasing the active sites toward ORR. The Pt–Pd heterostructured catalyst presents the highest mass activity of 6.06 A·mg<sup>−1</sup><sub>Pt</sub> among all reported Pt–Pd alloyed or composited catalysts, which is 26.4 times of the sample Pt/C (0.23 A·mg<sup>−1</sup><sub>Pt</sub>). Further, the fuel cell assembled by the electrocatalyst shows a current density of 1.23 ​A·cm<sup>−2</sup> at 0.6 ​V and good stability for over 100 ​h.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

设计具有低Pt负载量的高活性和稳定的电催化剂以改善燃料电池的氧还原反应(ORR)的缓慢动力学具有重要意义。在此,我们报道了Pt负载量低至8.02的Pt–Pd双金属异质结构的外延生长​重量%。实验研究和理论计算都证实,异质界面在电荷再分配中起着重要作用,电荷再分配加速了电子从Pd向Pt的转移,有助于降低Pd的d带中心,从而大大削弱O在异质界面上的临界最佳吸附构型的O吸附能。特别是,被吸附的O*,一种在相邻Pt和Pd原子之间处于桥接模式的中间体,具有相对较低的吸附能,其容易形成H2O以逃逸,从而向ORR释放活性位点。在所有报道的Pt-Pd合金或复合催化剂中,Pt-Pd异质结构催化剂的质量活性最高,为6.06 A·mg−1Pt,是样品Pt/C(0.23 A·mg–1Pt)的26.4倍。此外,由电催化剂组装的燃料电池显示出1.23的电流密度​0.6时的A·cm−2​V和良好的稳定性超过100​h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction

It is of great importance to design highly active and stable electrocatalysts with low Pt loading to improve the sluggish kinetics of oxygen reduction reaction (ORR) for fuel cells. Herein, we report an epitaxial growth of a Pt–Pd bimetallic heterostructure with a Pt loading as low as 8.02 ​wt%. Both experimental studies and theoretical calculations confirm that the heterointerfaces play a major role in charge redistribution, which accelerates electron transfer from Pd to Pt, contributing to downshifting the d-band center of Pd and consequently greatly weakening the O adsorption energy for a critical optimal adsorption configuration of O∗ on the heterointerface. In particular, the adsorbed O∗, an intermediate in a bridge mode between adjacent Pt and Pd atoms, has a relative low adsorption energy, which easily forms H2O to escape for releasing the active sites toward ORR. The Pt–Pd heterostructured catalyst presents the highest mass activity of 6.06 A·mg−1Pt among all reported Pt–Pd alloyed or composited catalysts, which is 26.4 times of the sample Pt/C (0.23 A·mg−1Pt). Further, the fuel cell assembled by the electrocatalyst shows a current density of 1.23 ​A·cm−2 at 0.6 ​V and good stability for over 100 ​h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1