石油钻井作业中罕见事件卡钻预测

IF 2.6 Q3 ENERGY & FUELS Upstream Oil and Gas Technology Pub Date : 2023-09-01 DOI:10.1016/j.upstre.2023.100096
Salvatore D’Amicis , Marta Pagani , Matteo Matteucci , Luigi Piroddi , Andrea Spelta , Fabrizio Zausa
{"title":"石油钻井作业中罕见事件卡钻预测","authors":"Salvatore D’Amicis ,&nbsp;Marta Pagani ,&nbsp;Matteo Matteucci ,&nbsp;Luigi Piroddi ,&nbsp;Andrea Spelta ,&nbsp;Fabrizio Zausa","doi":"10.1016/j.upstre.2023.100096","DOIUrl":null,"url":null,"abstract":"<div><p>Stuck-pipe phenomena are relatively rare in drilling operations in the oil &amp; gas industry, but can have disastrous economic consequences, causing costly time delays and sometimes even the loss of expensive machinery. In this work, we develop an event-based prediction model that relates the occurrence of precursor events to the stuck-pipe phenomena. To this aim, the detectors of various types of precursor events that typically anticipate stuck-pipe occurrences are first designed based on the available mudlog data. A Hidden Markov Model (HMM) is then developed to relate these precursor events to actual drilling problems, producing different levels of alarm, with the ultimate goal of predicting stuck pipes. The model has been tested on a dataset of wells with different characteristics, showing positive results.</p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"11 ","pages":"Article 100096"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stuck pipe prediction from rare events in oil drilling operations\",\"authors\":\"Salvatore D’Amicis ,&nbsp;Marta Pagani ,&nbsp;Matteo Matteucci ,&nbsp;Luigi Piroddi ,&nbsp;Andrea Spelta ,&nbsp;Fabrizio Zausa\",\"doi\":\"10.1016/j.upstre.2023.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stuck-pipe phenomena are relatively rare in drilling operations in the oil &amp; gas industry, but can have disastrous economic consequences, causing costly time delays and sometimes even the loss of expensive machinery. In this work, we develop an event-based prediction model that relates the occurrence of precursor events to the stuck-pipe phenomena. To this aim, the detectors of various types of precursor events that typically anticipate stuck-pipe occurrences are first designed based on the available mudlog data. A Hidden Markov Model (HMM) is then developed to relate these precursor events to actual drilling problems, producing different levels of alarm, with the ultimate goal of predicting stuck pipes. The model has been tested on a dataset of wells with different characteristics, showing positive results.</p></div>\",\"PeriodicalId\":101264,\"journal\":{\"name\":\"Upstream Oil and Gas Technology\",\"volume\":\"11 \",\"pages\":\"Article 100096\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Upstream Oil and Gas Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666260423000117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666260423000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

卡管现象在石油钻井作业中相对罕见;天然气行业,但可能会产生灾难性的经济后果,造成昂贵的时间延误,有时甚至损失昂贵的机械。在这项工作中,我们开发了一个基于事件的预测模型,该模型将前兆事件的发生与卡管现象联系起来。为此,首先基于可用的泥浆测井数据设计了通常预测卡管发生的各种类型前兆事件的探测器。然后开发了一个隐马尔可夫模型(HMM),将这些前兆事件与实际钻井问题联系起来,产生不同级别的警报,最终目标是预测卡管。该模型已在具有不同特征的井的数据集上进行了测试,显示出积极的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stuck pipe prediction from rare events in oil drilling operations

Stuck-pipe phenomena are relatively rare in drilling operations in the oil & gas industry, but can have disastrous economic consequences, causing costly time delays and sometimes even the loss of expensive machinery. In this work, we develop an event-based prediction model that relates the occurrence of precursor events to the stuck-pipe phenomena. To this aim, the detectors of various types of precursor events that typically anticipate stuck-pipe occurrences are first designed based on the available mudlog data. A Hidden Markov Model (HMM) is then developed to relate these precursor events to actual drilling problems, producing different levels of alarm, with the ultimate goal of predicting stuck pipes. The model has been tested on a dataset of wells with different characteristics, showing positive results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of pump jacks with theories and experiments Well perforating—More than reservoir connection A new method for predicting casing wear in highly deviated wells using mud logging data Experimental investigation of bypassed-oil recovery in tight reservoir rock using a two-step CO2 soaking strategy: Effects of fracture geometry A Review of Modern Approaches of Digitalization in Oil and Gas Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1