{"title":"透析器中白蛋白损失与中间分子去除的平衡","authors":"Franziska Hagemann , John Linkhorst , Hannah Roth , Matthias Wessling","doi":"10.1016/j.memlet.2023.100044","DOIUrl":null,"url":null,"abstract":"<div><p>Tuning the pore size distribution of hemodialysis membranes is essential for the membrane’s selectivity and significantly affects the quality of the dialysis treatment. Tailoring the membrane’s molecular weight cut-off appropriately balances the removal of middle-molecular-weight uremic toxins while avoiding albumin loss. This undesirable albumin loss is a potential side effect and concern for clinical use when aiming at increased removal of middle molecular weight molecules (middle molecules). It is hypothesized that control of the position of a narrow pore size distribution allows middle molecule removal while simultaneously counteracting the unwanted albumin loss. This study presents a comprehensive ex-vivo methodology and novel data on the balance of the clearance of middle molecules and albumin loss at different blood and dialysate flow rates using novel dialyzers. The outcomes hold significance for dialysis therapy, while the insights acquired have broader implications for the selectivity of ultrafiltration membranes.</p><p>The Theranova dialyzer shows the largest clearance for small-middle molecules. Phylther stands out with higher removal of the middle molecule YKL-40 than the other dialyzers but exhibits a significant albumin loss. Theranova demonstrates the best compromise between low albumin loss and good clearances of middle molecules.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"3 1","pages":"Article 100044"},"PeriodicalIF":4.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the balance between albumin loss and removal of middle molecules in dialyzers\",\"authors\":\"Franziska Hagemann , John Linkhorst , Hannah Roth , Matthias Wessling\",\"doi\":\"10.1016/j.memlet.2023.100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tuning the pore size distribution of hemodialysis membranes is essential for the membrane’s selectivity and significantly affects the quality of the dialysis treatment. Tailoring the membrane’s molecular weight cut-off appropriately balances the removal of middle-molecular-weight uremic toxins while avoiding albumin loss. This undesirable albumin loss is a potential side effect and concern for clinical use when aiming at increased removal of middle molecular weight molecules (middle molecules). It is hypothesized that control of the position of a narrow pore size distribution allows middle molecule removal while simultaneously counteracting the unwanted albumin loss. This study presents a comprehensive ex-vivo methodology and novel data on the balance of the clearance of middle molecules and albumin loss at different blood and dialysate flow rates using novel dialyzers. The outcomes hold significance for dialysis therapy, while the insights acquired have broader implications for the selectivity of ultrafiltration membranes.</p><p>The Theranova dialyzer shows the largest clearance for small-middle molecules. Phylther stands out with higher removal of the middle molecule YKL-40 than the other dialyzers but exhibits a significant albumin loss. Theranova demonstrates the best compromise between low albumin loss and good clearances of middle molecules.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"3 1\",\"pages\":\"Article 100044\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421223000089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421223000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
On the balance between albumin loss and removal of middle molecules in dialyzers
Tuning the pore size distribution of hemodialysis membranes is essential for the membrane’s selectivity and significantly affects the quality of the dialysis treatment. Tailoring the membrane’s molecular weight cut-off appropriately balances the removal of middle-molecular-weight uremic toxins while avoiding albumin loss. This undesirable albumin loss is a potential side effect and concern for clinical use when aiming at increased removal of middle molecular weight molecules (middle molecules). It is hypothesized that control of the position of a narrow pore size distribution allows middle molecule removal while simultaneously counteracting the unwanted albumin loss. This study presents a comprehensive ex-vivo methodology and novel data on the balance of the clearance of middle molecules and albumin loss at different blood and dialysate flow rates using novel dialyzers. The outcomes hold significance for dialysis therapy, while the insights acquired have broader implications for the selectivity of ultrafiltration membranes.
The Theranova dialyzer shows the largest clearance for small-middle molecules. Phylther stands out with higher removal of the middle molecule YKL-40 than the other dialyzers but exhibits a significant albumin loss. Theranova demonstrates the best compromise between low albumin loss and good clearances of middle molecules.