{"title":"太阳能强化膜蒸馏法回收氨","authors":"Kai Yang , Hongang Du , Mohan Qin","doi":"10.1016/j.memlet.2023.100043","DOIUrl":null,"url":null,"abstract":"<div><p>Directly recovering ammonia from waste streams is a sustainable approach for ammonia management since it saves energy from both the Haber-Bosch process, the major industrial method for ammonia synthesis, and wastewater treatment. Membrane distillation (MD), an evaporation-based membrane separation process, has been employed to recover ammonia from ammonia-rich wastewater due to the high volatility of ammonia. In this study, the photothermal effect is incorporated into MD to enhance the ammonia recovery from ammonia-rich wastewater. Carbon black particles are coated on the membrane surface to increase its absorption of solar irradiation at the solution-membrane interface and facilitate the ammonia transport across the membrane. We demonstrate that the system can recover ammonia at a maximum ammonia flux of 4.52 g-N·m<sup>−2</sup>·h<sup>−</sup><sup>1</sup> with a solar intensity of 1.7 kW·m<sup>−</sup><sup>2</sup>. The estimated mass transfer coefficient of carbon black coated membrane is 2.67 × 10<sup>−2</sup> m·h<sup>−</sup><sup>1</sup> with solar irradiation, enhanced by 30.8% when compared to that in a pristine membrane. We also confirm that the improvement of ammonia flux by photothermal effect is equivalent to heating the feed solution by 20–30 °C. Our study demonstrates a promising pathway for utilizing solar energy by photothermal effects to enhance MD for ammonia recovery from ammonia-rich wastewater.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"3 1","pages":"Article 100043"},"PeriodicalIF":4.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar enhanced membrane distillation for ammonia recovery\",\"authors\":\"Kai Yang , Hongang Du , Mohan Qin\",\"doi\":\"10.1016/j.memlet.2023.100043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Directly recovering ammonia from waste streams is a sustainable approach for ammonia management since it saves energy from both the Haber-Bosch process, the major industrial method for ammonia synthesis, and wastewater treatment. Membrane distillation (MD), an evaporation-based membrane separation process, has been employed to recover ammonia from ammonia-rich wastewater due to the high volatility of ammonia. In this study, the photothermal effect is incorporated into MD to enhance the ammonia recovery from ammonia-rich wastewater. Carbon black particles are coated on the membrane surface to increase its absorption of solar irradiation at the solution-membrane interface and facilitate the ammonia transport across the membrane. We demonstrate that the system can recover ammonia at a maximum ammonia flux of 4.52 g-N·m<sup>−2</sup>·h<sup>−</sup><sup>1</sup> with a solar intensity of 1.7 kW·m<sup>−</sup><sup>2</sup>. The estimated mass transfer coefficient of carbon black coated membrane is 2.67 × 10<sup>−2</sup> m·h<sup>−</sup><sup>1</sup> with solar irradiation, enhanced by 30.8% when compared to that in a pristine membrane. We also confirm that the improvement of ammonia flux by photothermal effect is equivalent to heating the feed solution by 20–30 °C. Our study demonstrates a promising pathway for utilizing solar energy by photothermal effects to enhance MD for ammonia recovery from ammonia-rich wastewater.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"3 1\",\"pages\":\"Article 100043\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421223000077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421223000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Solar enhanced membrane distillation for ammonia recovery
Directly recovering ammonia from waste streams is a sustainable approach for ammonia management since it saves energy from both the Haber-Bosch process, the major industrial method for ammonia synthesis, and wastewater treatment. Membrane distillation (MD), an evaporation-based membrane separation process, has been employed to recover ammonia from ammonia-rich wastewater due to the high volatility of ammonia. In this study, the photothermal effect is incorporated into MD to enhance the ammonia recovery from ammonia-rich wastewater. Carbon black particles are coated on the membrane surface to increase its absorption of solar irradiation at the solution-membrane interface and facilitate the ammonia transport across the membrane. We demonstrate that the system can recover ammonia at a maximum ammonia flux of 4.52 g-N·m−2·h−1 with a solar intensity of 1.7 kW·m−2. The estimated mass transfer coefficient of carbon black coated membrane is 2.67 × 10−2 m·h−1 with solar irradiation, enhanced by 30.8% when compared to that in a pristine membrane. We also confirm that the improvement of ammonia flux by photothermal effect is equivalent to heating the feed solution by 20–30 °C. Our study demonstrates a promising pathway for utilizing solar energy by photothermal effects to enhance MD for ammonia recovery from ammonia-rich wastewater.