CGAN-EB:一种使用条件生成对抗网络作为安全性能函数的碰撞频率建模的非参数经验贝叶斯方法

Mohammad Zarei, Bruce Hellinga, Pedram Izadpanah
{"title":"CGAN-EB:一种使用条件生成对抗网络作为安全性能函数的碰撞频率建模的非参数经验贝叶斯方法","authors":"Mohammad Zarei,&nbsp;Bruce Hellinga,&nbsp;Pedram Izadpanah","doi":"10.1016/j.ijtst.2022.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>The empirical Bayes (EB) method based on parametric statistical models such as the negative binomial (NB) has been widely used for ranking sites in the road network safety screening process. In this paper a novel non-parametric EB method for modeling crash frequency data based on Conditional Generative Adversarial Networks (CGAN) is proposed and evaluated over a real-world crash data set. Unlike parametric approaches, there is no need for a pre-specified underlying relationship between dependent and independent variables in the proposed CGAN-EB and they are able to model any types of distributions. The proposed methodology is applied to real-world and simulated crash data sets. The performance of CGAN-EB in terms of model fit, predictive performance and network screening outcomes is compared with the conventional approach (NB-EB) as a benchmark. The results indicate that the proposed CGAN-EB approach outperforms NB-EB in terms of prediction power and hotspot identification tests.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"12 3","pages":"Pages 753-764"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"CGAN-EB: A non-parametric empirical Bayes method for crash frequency modeling using conditional generative adversarial networks as safety performance functions\",\"authors\":\"Mohammad Zarei,&nbsp;Bruce Hellinga,&nbsp;Pedram Izadpanah\",\"doi\":\"10.1016/j.ijtst.2022.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The empirical Bayes (EB) method based on parametric statistical models such as the negative binomial (NB) has been widely used for ranking sites in the road network safety screening process. In this paper a novel non-parametric EB method for modeling crash frequency data based on Conditional Generative Adversarial Networks (CGAN) is proposed and evaluated over a real-world crash data set. Unlike parametric approaches, there is no need for a pre-specified underlying relationship between dependent and independent variables in the proposed CGAN-EB and they are able to model any types of distributions. The proposed methodology is applied to real-world and simulated crash data sets. The performance of CGAN-EB in terms of model fit, predictive performance and network screening outcomes is compared with the conventional approach (NB-EB) as a benchmark. The results indicate that the proposed CGAN-EB approach outperforms NB-EB in terms of prediction power and hotspot identification tests.</p></div>\",\"PeriodicalId\":52282,\"journal\":{\"name\":\"International Journal of Transportation Science and Technology\",\"volume\":\"12 3\",\"pages\":\"Pages 753-764\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Transportation Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2046043022000594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043022000594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 9

摘要

基于负二项(NB)等参数统计模型的经验贝叶斯(EB)方法已被广泛用于道路网络安全筛选过程中的站点排名。本文提出了一种新的基于条件生成对抗性网络(CGAN)的非参数EB碰撞频率数据建模方法,并在真实世界的碰撞数据集上进行了评估。与参数方法不同,在所提出的CGAN-EB中,不需要预先指定因变量和自变量之间的基本关系,并且它们能够对任何类型的分布进行建模。所提出的方法应用于真实世界和模拟的碰撞数据集。将CGAN-EB在模型拟合、预测性能和网络筛选结果方面的性能与传统方法(NB-EB)进行比较,作为基准。结果表明,所提出的CGAN-EB方法在预测能力和热点识别测试方面优于NB-EB方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CGAN-EB: A non-parametric empirical Bayes method for crash frequency modeling using conditional generative adversarial networks as safety performance functions

The empirical Bayes (EB) method based on parametric statistical models such as the negative binomial (NB) has been widely used for ranking sites in the road network safety screening process. In this paper a novel non-parametric EB method for modeling crash frequency data based on Conditional Generative Adversarial Networks (CGAN) is proposed and evaluated over a real-world crash data set. Unlike parametric approaches, there is no need for a pre-specified underlying relationship between dependent and independent variables in the proposed CGAN-EB and they are able to model any types of distributions. The proposed methodology is applied to real-world and simulated crash data sets. The performance of CGAN-EB in terms of model fit, predictive performance and network screening outcomes is compared with the conventional approach (NB-EB) as a benchmark. The results indicate that the proposed CGAN-EB approach outperforms NB-EB in terms of prediction power and hotspot identification tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
期刊最新文献
Comparing the vibrational behavior of e-kick scooters and e-bikes: Evidence from Italy Injury severity of drowsy drivers involved in single vehicle crashes: Accounting for temporal instability and unobserved heterogeneity Train rescheduling and platforming in large high-speed railway stations Characteristics and identification of risky driving behaviors in expressway tunnels based on behavior spectrum Performance evaluation of Bailey method used in asphalt mixtures containing natural river sands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1