Guangzhen Zhao , Ke Ning , Mingqi Wei, Linlin Zhang, Lu Han, Guang Zhu, Jie Yang, Hongyan Wang, Fei Huang
{"title":"Fe2N@Cotton-based多孔碳纤维电极材料的制备及其超电容性能的增强","authors":"Guangzhen Zhao , Ke Ning , Mingqi Wei, Linlin Zhang, Lu Han, Guang Zhu, Jie Yang, Hongyan Wang, Fei Huang","doi":"10.1016/j.recm.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>With the emergence of supercapacitors (SCs), the creation of bio-based electrode materials has grown in significance for the advancement of energy storage. However, it is particularly difficult for cathode materials to meet the demands of practical uses due to their low energy density. Herein, MIL-88 was fabricated <em>in situ</em> on the surface of cotton fibers used in cosmetics, followed by creating Fe<sub>2</sub>N@porous carbon fiber composite (Fe<sub>2</sub>N@PCF) through heat treatment at various temperatures. Fe<sub>2</sub>N@PCF-800 demonstrates excellent specific capacitance performance (552 F <em>g</em><sup>−</sup><sup>1</sup> at 1 A <em>g</em><sup>−</sup><sup>1</sup>). Meanwhile, The AC//Fe<sub>2</sub>N@PCF-800 device exhibits the largest energy density of 38 Wh kg<sup>−1</sup> at 800 W kg<sup>−1</sup> and a long cycling stability (83.3% capacity retention after 6000 cycles). Our elaborately designed Fe<sub>2</sub>N@PCF demonstrate multiple advantages: i) the Fe<sub>2</sub>N@PCF-800 shows abundant mesopores, providing abundant ion-diffusion pathways for mass transport and rich graphite microstructures, improving electrical conductivity for electron transferowning; ii) the rich nitrogen dopants and Fe<sub>2</sub>N structure within all carbon components increase the capacitance through their pseudocapacitive contribution. These findings highlight the importance of biomass derived carbon materials for SCs applications.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"2 4","pages":"Pages 277-287"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication and Enhanced Supercapacitive Performance of Fe2N@Cotton-based Porous Carbon fibers as Electrode Material\",\"authors\":\"Guangzhen Zhao , Ke Ning , Mingqi Wei, Linlin Zhang, Lu Han, Guang Zhu, Jie Yang, Hongyan Wang, Fei Huang\",\"doi\":\"10.1016/j.recm.2023.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the emergence of supercapacitors (SCs), the creation of bio-based electrode materials has grown in significance for the advancement of energy storage. However, it is particularly difficult for cathode materials to meet the demands of practical uses due to their low energy density. Herein, MIL-88 was fabricated <em>in situ</em> on the surface of cotton fibers used in cosmetics, followed by creating Fe<sub>2</sub>N@porous carbon fiber composite (Fe<sub>2</sub>N@PCF) through heat treatment at various temperatures. Fe<sub>2</sub>N@PCF-800 demonstrates excellent specific capacitance performance (552 F <em>g</em><sup>−</sup><sup>1</sup> at 1 A <em>g</em><sup>−</sup><sup>1</sup>). Meanwhile, The AC//Fe<sub>2</sub>N@PCF-800 device exhibits the largest energy density of 38 Wh kg<sup>−1</sup> at 800 W kg<sup>−1</sup> and a long cycling stability (83.3% capacity retention after 6000 cycles). Our elaborately designed Fe<sub>2</sub>N@PCF demonstrate multiple advantages: i) the Fe<sub>2</sub>N@PCF-800 shows abundant mesopores, providing abundant ion-diffusion pathways for mass transport and rich graphite microstructures, improving electrical conductivity for electron transferowning; ii) the rich nitrogen dopants and Fe<sub>2</sub>N structure within all carbon components increase the capacitance through their pseudocapacitive contribution. These findings highlight the importance of biomass derived carbon materials for SCs applications.</p></div>\",\"PeriodicalId\":101081,\"journal\":{\"name\":\"Resources Chemicals and Materials\",\"volume\":\"2 4\",\"pages\":\"Pages 277-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Chemicals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772443323000375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443323000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
随着超级电容器(SC)的出现,生物基电极材料的开发对储能的发展具有重要意义。然而,阴极材料由于其低能量密度而特别难以满足实际应用的要求。在这里,MIL-88是在化妆品中使用的棉纤维表面原位制造的,然后创造Fe2N@porous碳纤维复合材料(Fe2N@PCF)通过在不同温度下的热处理。Fe2N@PCF-800表现出优异的比电容性能(1 A g−1时为552 F g−1)。与此同时,AC//Fe2N@PCF-800该装置在800 W kg−1下表现出38 Wh kg−1的最大能量密度和长循环稳定性(6000次循环后容量保持率为83.3%)。我们精心设计Fe2N@PCF展示多重优势:i)Fe2N@PCF-800显示出丰富的中孔,为质量传输提供了丰富的离子扩散途径和丰富的石墨微观结构,提高了电子转移的导电性;ii)所有碳组分中的富氮掺杂剂和Fe2N结构通过它们的赝电容贡献增加了电容。这些发现突出了生物质衍生碳材料在SCs应用中的重要性。
Fabrication and Enhanced Supercapacitive Performance of Fe2N@Cotton-based Porous Carbon fibers as Electrode Material
With the emergence of supercapacitors (SCs), the creation of bio-based electrode materials has grown in significance for the advancement of energy storage. However, it is particularly difficult for cathode materials to meet the demands of practical uses due to their low energy density. Herein, MIL-88 was fabricated in situ on the surface of cotton fibers used in cosmetics, followed by creating Fe2N@porous carbon fiber composite (Fe2N@PCF) through heat treatment at various temperatures. Fe2N@PCF-800 demonstrates excellent specific capacitance performance (552 F g−1 at 1 A g−1). Meanwhile, The AC//Fe2N@PCF-800 device exhibits the largest energy density of 38 Wh kg−1 at 800 W kg−1 and a long cycling stability (83.3% capacity retention after 6000 cycles). Our elaborately designed Fe2N@PCF demonstrate multiple advantages: i) the Fe2N@PCF-800 shows abundant mesopores, providing abundant ion-diffusion pathways for mass transport and rich graphite microstructures, improving electrical conductivity for electron transferowning; ii) the rich nitrogen dopants and Fe2N structure within all carbon components increase the capacitance through their pseudocapacitive contribution. These findings highlight the importance of biomass derived carbon materials for SCs applications.