用非线性有限元分析研究具有复杂结构的细长钢筋混凝土墙的性能

Kamal A. Ahmed , Laura N. Lowes , Dawn E. Lehman
{"title":"用非线性有限元分析研究具有复杂结构的细长钢筋混凝土墙的性能","authors":"Kamal A. Ahmed ,&nbsp;Laura N. Lowes ,&nbsp;Dawn E. Lehman","doi":"10.1016/j.rcns.2023.02.010","DOIUrl":null,"url":null,"abstract":"<div><p>Slender RC walls are used commonly in mid- and high-rise buildings to resist lateral loads arising from earthquakes and wind forces. To accommodate architectural constraints, facilitate construction, and maximize structural efficiency, the majority of these walls have complex configurations, comprising planar and non-planar wall elements that often include regular or irregular patterns of openings. To date most laboratory testing of slender RC walls has employed wall specimens with relatively simple configurations and without openings and coupling action which provides only limited understanding of the impact on performance of the variations in configuration and reinforcement detailing observed in real-world construction.</p><p>This study presents a 3D continuum modeling approach to improve understanding of the behavior of walls with complex configurations and support recommendations for design of these systems. Planar wall data were used to calibrate the continuum-type modeling approach; experimental data characterizing the response of non-planar walls and walls with openings are used to validate the model.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"2 1","pages":"Pages 120-142"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the behavior of slender reinforced concrete walls with complex configurations using nonlinear finite element analysis\",\"authors\":\"Kamal A. Ahmed ,&nbsp;Laura N. Lowes ,&nbsp;Dawn E. Lehman\",\"doi\":\"10.1016/j.rcns.2023.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Slender RC walls are used commonly in mid- and high-rise buildings to resist lateral loads arising from earthquakes and wind forces. To accommodate architectural constraints, facilitate construction, and maximize structural efficiency, the majority of these walls have complex configurations, comprising planar and non-planar wall elements that often include regular or irregular patterns of openings. To date most laboratory testing of slender RC walls has employed wall specimens with relatively simple configurations and without openings and coupling action which provides only limited understanding of the impact on performance of the variations in configuration and reinforcement detailing observed in real-world construction.</p><p>This study presents a 3D continuum modeling approach to improve understanding of the behavior of walls with complex configurations and support recommendations for design of these systems. Planar wall data were used to calibrate the continuum-type modeling approach; experimental data characterizing the response of non-planar walls and walls with openings are used to validate the model.</p></div>\",\"PeriodicalId\":101077,\"journal\":{\"name\":\"Resilient Cities and Structures\",\"volume\":\"2 1\",\"pages\":\"Pages 120-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resilient Cities and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772741623000108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741623000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细长钢筋混凝土墙通常用于中高层建筑,以抵抗地震和风力产生的横向荷载。为了适应建筑约束、便于施工并最大限度地提高结构效率,这些墙中的大多数具有复杂的配置,包括平面和非平面墙元素,这些元素通常包括规则或不规则的开口图案。到目前为止,大多数细长钢筋混凝土墙的实验室测试都采用了配置相对简单、没有开口和耦合作用的墙试样,这对现实世界建筑中观察到的配置和钢筋细节变化对性能的影响只有有限的了解。本研究提出了一种三维连续体建模方法,以提高对具有复杂配置的墙的行为的理解,并为这些系统的设计提供支持建议。平面墙数据用于校准连续体类型建模方法;利用表征非平面墙和开孔墙响应的实验数据对模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the behavior of slender reinforced concrete walls with complex configurations using nonlinear finite element analysis

Slender RC walls are used commonly in mid- and high-rise buildings to resist lateral loads arising from earthquakes and wind forces. To accommodate architectural constraints, facilitate construction, and maximize structural efficiency, the majority of these walls have complex configurations, comprising planar and non-planar wall elements that often include regular or irregular patterns of openings. To date most laboratory testing of slender RC walls has employed wall specimens with relatively simple configurations and without openings and coupling action which provides only limited understanding of the impact on performance of the variations in configuration and reinforcement detailing observed in real-world construction.

This study presents a 3D continuum modeling approach to improve understanding of the behavior of walls with complex configurations and support recommendations for design of these systems. Planar wall data were used to calibrate the continuum-type modeling approach; experimental data characterizing the response of non-planar walls and walls with openings are used to validate the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Automated knowledge graphs for complex systems (AutoGraCS): Applications to management of bridge networks Uncovering implicit Seismogenic associated regions towards promoting urban resilience Building Stock and Emission Models for Jakarta Key networks to create disaster resilient Smart Cities Mission: A case for remodeling India's Smart Cities Mission to include disaster resilience Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1