{"title":"自主多船系统的漂浮物操纵研究进展","authors":"Zhe Du, Rudy R. Negenborn, Vasso Reppa","doi":"10.1016/j.arcontrol.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>The regulatory endorsement of the International Maritime Organization (IMO) and the support of pivotal shipping market players in recent years motivate the investigation of the potential role that autonomous vessels play in the shipping industry. As the complexity and scale of the envisioned applications increase, research works gradually transform the focus from single-vessel systems to multi-vessel systems. Thus, autonomous multi-vessel systems applied in the shipping industry are becoming a promising research direction. One of the typical research directions is floating object manipulation by multiple tugboats.</p><p>This paper offers a comprehensive literature review of the existing research on floating object manipulation by autonomous multi-vessel systems. Based on the prior knowledge of object manipulation problems in multi-robot systems, four typical ways of maritime object manipulation are summarized: attaching, caging, pushing, and towing. The advantages and disadvantages of each manipulation way are discussed, including its typical floating object and application scenarios. Moreover, the aspects of control objective, control architecture, collision avoidance operation, disturbances consideration, and role of each involved vessel are analyzed for gaining insight into the approaches for solving these problems. Finally, challenges and future directions are highlighted to give possible inspiration.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 255-278"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Review of floating object manipulation by autonomous multi-vessel systems\",\"authors\":\"Zhe Du, Rudy R. Negenborn, Vasso Reppa\",\"doi\":\"10.1016/j.arcontrol.2022.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The regulatory endorsement of the International Maritime Organization (IMO) and the support of pivotal shipping market players in recent years motivate the investigation of the potential role that autonomous vessels play in the shipping industry. As the complexity and scale of the envisioned applications increase, research works gradually transform the focus from single-vessel systems to multi-vessel systems. Thus, autonomous multi-vessel systems applied in the shipping industry are becoming a promising research direction. One of the typical research directions is floating object manipulation by multiple tugboats.</p><p>This paper offers a comprehensive literature review of the existing research on floating object manipulation by autonomous multi-vessel systems. Based on the prior knowledge of object manipulation problems in multi-robot systems, four typical ways of maritime object manipulation are summarized: attaching, caging, pushing, and towing. The advantages and disadvantages of each manipulation way are discussed, including its typical floating object and application scenarios. Moreover, the aspects of control objective, control architecture, collision avoidance operation, disturbances consideration, and role of each involved vessel are analyzed for gaining insight into the approaches for solving these problems. Finally, challenges and future directions are highlighted to give possible inspiration.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"55 \",\"pages\":\"Pages 255-278\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578822001365\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578822001365","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Review of floating object manipulation by autonomous multi-vessel systems
The regulatory endorsement of the International Maritime Organization (IMO) and the support of pivotal shipping market players in recent years motivate the investigation of the potential role that autonomous vessels play in the shipping industry. As the complexity and scale of the envisioned applications increase, research works gradually transform the focus from single-vessel systems to multi-vessel systems. Thus, autonomous multi-vessel systems applied in the shipping industry are becoming a promising research direction. One of the typical research directions is floating object manipulation by multiple tugboats.
This paper offers a comprehensive literature review of the existing research on floating object manipulation by autonomous multi-vessel systems. Based on the prior knowledge of object manipulation problems in multi-robot systems, four typical ways of maritime object manipulation are summarized: attaching, caging, pushing, and towing. The advantages and disadvantages of each manipulation way are discussed, including its typical floating object and application scenarios. Moreover, the aspects of control objective, control architecture, collision avoidance operation, disturbances consideration, and role of each involved vessel are analyzed for gaining insight into the approaches for solving these problems. Finally, challenges and future directions are highlighted to give possible inspiration.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.