当受大脑启发的人工智能遇到AGI时

Lin Zhao , Lu Zhang , Zihao Wu , Yuzhong Chen , Haixing Dai , Xiaowei Yu , Zhengliang Liu , Tuo Zhang , Xintao Hu , Xi Jiang , Xiang Li , Dajiang Zhu , Dinggang Shen , Tianming Liu
{"title":"当受大脑启发的人工智能遇到AGI时","authors":"Lin Zhao ,&nbsp;Lu Zhang ,&nbsp;Zihao Wu ,&nbsp;Yuzhong Chen ,&nbsp;Haixing Dai ,&nbsp;Xiaowei Yu ,&nbsp;Zhengliang Liu ,&nbsp;Tuo Zhang ,&nbsp;Xintao Hu ,&nbsp;Xi Jiang ,&nbsp;Xiang Li ,&nbsp;Dajiang Zhu ,&nbsp;Dinggang Shen ,&nbsp;Tianming Liu","doi":"10.1016/j.metrad.2023.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial General Intelligence (AGI) has been a long-standing goal of humanity, with the aim of creating machines capable of performing any intellectual task that humans can do. To achieve this, AGI researchers draw inspiration from the human brain and seek to replicate its principles in intelligent machines. Brain-inspired artificial intelligence is a field that has emerged from this endeavor, combining insights from neuroscience, psychology, and computer science to develop more efficient and powerful AI systems. In this article, we provide a comprehensive overview of brain-inspired AI from the perspective of AGI. We begin with the current progress in brain-inspired AI and its extensive connection with AGI. We then cover the important characteristics for both human intelligence and AGI (e.g., scaling, multimodality, and reasoning). We discuss important technologies toward achieving AGI in current AI systems, such as in-context learning and prompt tuning. We also investigate the evolution of AGI systems from both algorithmic and infrastructural perspectives. Finally, we explore the limitations and future of AGI.</p></div>","PeriodicalId":100921,"journal":{"name":"Meta-Radiology","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When brain-inspired AI meets AGI\",\"authors\":\"Lin Zhao ,&nbsp;Lu Zhang ,&nbsp;Zihao Wu ,&nbsp;Yuzhong Chen ,&nbsp;Haixing Dai ,&nbsp;Xiaowei Yu ,&nbsp;Zhengliang Liu ,&nbsp;Tuo Zhang ,&nbsp;Xintao Hu ,&nbsp;Xi Jiang ,&nbsp;Xiang Li ,&nbsp;Dajiang Zhu ,&nbsp;Dinggang Shen ,&nbsp;Tianming Liu\",\"doi\":\"10.1016/j.metrad.2023.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial General Intelligence (AGI) has been a long-standing goal of humanity, with the aim of creating machines capable of performing any intellectual task that humans can do. To achieve this, AGI researchers draw inspiration from the human brain and seek to replicate its principles in intelligent machines. Brain-inspired artificial intelligence is a field that has emerged from this endeavor, combining insights from neuroscience, psychology, and computer science to develop more efficient and powerful AI systems. In this article, we provide a comprehensive overview of brain-inspired AI from the perspective of AGI. We begin with the current progress in brain-inspired AI and its extensive connection with AGI. We then cover the important characteristics for both human intelligence and AGI (e.g., scaling, multimodality, and reasoning). We discuss important technologies toward achieving AGI in current AI systems, such as in-context learning and prompt tuning. We also investigate the evolution of AGI systems from both algorithmic and infrastructural perspectives. Finally, we explore the limitations and future of AGI.</p></div>\",\"PeriodicalId\":100921,\"journal\":{\"name\":\"Meta-Radiology\",\"volume\":\"1 1\",\"pages\":\"Article 100005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta-Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S295016282300005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta-Radiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295016282300005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通用人工智能(AGI)一直是人类的一个长期目标,目的是创造能够执行人类所能完成的任何智力任务的机器。为了实现这一目标,AGI研究人员从人脑中汲取灵感,并试图在智能机器中复制其原理。以大脑为灵感的人工智能是这一努力中出现的一个领域,它结合了神经科学、心理学和计算机科学的见解,开发出更高效、更强大的人工智能系统。在这篇文章中,我们从AGI的角度对大脑启发的人工智能进行了全面的概述。我们从当前受大脑启发的人工智能的进展及其与AGI的广泛联系开始。然后,我们介绍了人类智能和AGI的重要特征(例如,缩放、多模态和推理)。我们讨论了在当前人工智能系统中实现AGI的重要技术,如上下文学习和即时调整。我们还从算法和基础设施的角度研究了AGI系统的演变。最后,我们探讨了AGI的局限性和未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
When brain-inspired AI meets AGI

Artificial General Intelligence (AGI) has been a long-standing goal of humanity, with the aim of creating machines capable of performing any intellectual task that humans can do. To achieve this, AGI researchers draw inspiration from the human brain and seek to replicate its principles in intelligent machines. Brain-inspired artificial intelligence is a field that has emerged from this endeavor, combining insights from neuroscience, psychology, and computer science to develop more efficient and powerful AI systems. In this article, we provide a comprehensive overview of brain-inspired AI from the perspective of AGI. We begin with the current progress in brain-inspired AI and its extensive connection with AGI. We then cover the important characteristics for both human intelligence and AGI (e.g., scaling, multimodality, and reasoning). We discuss important technologies toward achieving AGI in current AI systems, such as in-context learning and prompt tuning. We also investigate the evolution of AGI systems from both algorithmic and infrastructural perspectives. Finally, we explore the limitations and future of AGI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in the application of deep learning for coronary artery calcification Rethinking the studies of diagnostic biomarkers for mental disorders One scan, multiple insights: A review of AI-Driven biomarker imaging and composite measure detection in lung cancer screening A systematic evaluation of GPT-4V's multimodal capability for chest X-ray image analysis Integrating AI in college education: Positive yet mixed experiences with ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1