利用基于探针的数据评估动脉信号表现的大规模并行方法

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2023-01-01 DOI:10.1080/15472450.2022.2069497
Subhadipto Poddar , Pranamesh Chakraborty , Anuj Sharma , Skylar Knickerbocker , Neal Hawkins
{"title":"利用基于探针的数据评估动脉信号表现的大规模并行方法","authors":"Subhadipto Poddar ,&nbsp;Pranamesh Chakraborty ,&nbsp;Anuj Sharma ,&nbsp;Skylar Knickerbocker ,&nbsp;Neal Hawkins","doi":"10.1080/15472450.2022.2069497","DOIUrl":null,"url":null,"abstract":"<div><p>Effective performance of arterial corridors is essential to community safety and vitality. Considering the dynamic nature of traffic demand, efficient management of these corridors require frequent updating of the traffic signal timings through various strategies. Agency resources for these activities are commonly scarce and are primarily by public complaints.</p><p>This study provides a workflow using probe-based data to measure and compare different segments on arterial corridors in terms of the traffic signal performance measures that can capture travel time dynamics across signalized intersections. The proposed methodology identifies a group of dynamic days followed by evaluation of travel rate based upon remaining non-dynamic days. Dynamic days represent the variability of traffic on a segment. Consequently, a corridor having high number of dynamic segments along with poor performance during normal days would be a candidate for adaptive control. Further, to handle the large-scale data source collected from city-wide or statewide traffic signals, the study adopts parallel computation-based strategy using MapReduce technique. A case study was conducted on 11 corridors within Des Moines, Iowa, to demonstrate the efficacy of the proposed approach, which identified two arterial corridors, Merle Hay Road and University Avenue, to be suitable for adaptive traffic signal control.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 4","pages":"Pages 488-502"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Massively parallelizable approach for evaluating signalized arterial performance using probe-based data\",\"authors\":\"Subhadipto Poddar ,&nbsp;Pranamesh Chakraborty ,&nbsp;Anuj Sharma ,&nbsp;Skylar Knickerbocker ,&nbsp;Neal Hawkins\",\"doi\":\"10.1080/15472450.2022.2069497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Effective performance of arterial corridors is essential to community safety and vitality. Considering the dynamic nature of traffic demand, efficient management of these corridors require frequent updating of the traffic signal timings through various strategies. Agency resources for these activities are commonly scarce and are primarily by public complaints.</p><p>This study provides a workflow using probe-based data to measure and compare different segments on arterial corridors in terms of the traffic signal performance measures that can capture travel time dynamics across signalized intersections. The proposed methodology identifies a group of dynamic days followed by evaluation of travel rate based upon remaining non-dynamic days. Dynamic days represent the variability of traffic on a segment. Consequently, a corridor having high number of dynamic segments along with poor performance during normal days would be a candidate for adaptive control. Further, to handle the large-scale data source collected from city-wide or statewide traffic signals, the study adopts parallel computation-based strategy using MapReduce technique. A case study was conducted on 11 corridors within Des Moines, Iowa, to demonstrate the efficacy of the proposed approach, which identified two arterial corridors, Merle Hay Road and University Avenue, to be suitable for adaptive traffic signal control.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 4\",\"pages\":\"Pages 488-502\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022004212\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022004212","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 4

摘要

干线走廊的有效运行对社区的安全和活力至关重要。考虑到交通需求的动态性质,这些走廊的有效管理需要通过各种策略频繁更新交通信号时间。用于这些活动的机构资源通常很少,主要是通过公众投诉。本研究提供了一个使用基于探针的数据来测量和比较干线走廊上不同路段的交通信号性能指标的工作流程,该指标可以捕捉信号交叉口的行程时间动态。拟议方法确定了一组动态天数,然后根据剩余的非动态天数评估旅行费率。动态天数表示路段上交通量的可变性。因此,在正常日子里,具有大量动态路段以及较差性能的走廊将是自适应控制的候选者。此外,为了处理从全市或全州交通信号采集的大规模数据源,本研究采用了基于MapReduce技术的并行计算策略。对爱荷华州得梅因市的11条走廊进行了案例研究,以证明所提出方法的有效性,该方法确定了两条干线走廊,Merle Hay路和大学大道,适用于自适应交通信号控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Massively parallelizable approach for evaluating signalized arterial performance using probe-based data

Effective performance of arterial corridors is essential to community safety and vitality. Considering the dynamic nature of traffic demand, efficient management of these corridors require frequent updating of the traffic signal timings through various strategies. Agency resources for these activities are commonly scarce and are primarily by public complaints.

This study provides a workflow using probe-based data to measure and compare different segments on arterial corridors in terms of the traffic signal performance measures that can capture travel time dynamics across signalized intersections. The proposed methodology identifies a group of dynamic days followed by evaluation of travel rate based upon remaining non-dynamic days. Dynamic days represent the variability of traffic on a segment. Consequently, a corridor having high number of dynamic segments along with poor performance during normal days would be a candidate for adaptive control. Further, to handle the large-scale data source collected from city-wide or statewide traffic signals, the study adopts parallel computation-based strategy using MapReduce technique. A case study was conducted on 11 corridors within Des Moines, Iowa, to demonstrate the efficacy of the proposed approach, which identified two arterial corridors, Merle Hay Road and University Avenue, to be suitable for adaptive traffic signal control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1