多车道高速公路的自组织组队与解散策略

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2023-01-01 DOI:10.1080/15472450.2021.1993212
Santa Maiti , Stephan Winter , Lars Kulik , Sudeshna Sarkar
{"title":"多车道高速公路的自组织组队与解散策略","authors":"Santa Maiti ,&nbsp;Stephan Winter ,&nbsp;Lars Kulik ,&nbsp;Sudeshna Sarkar","doi":"10.1080/15472450.2021.1993212","DOIUrl":null,"url":null,"abstract":"<div><p><em>Vehicle platooning</em>, a coordinated and controlled vehicle-following strategy, addresses the issue of high fuel consumption of heavy-duty vehicles. This research considers platoons that are formed on the fly in an ad-hoc manner. We investigate two types of ad-hoc platoon formation and corresponding platoon dissolution strategies. The first approach forms a platoon greedily without considering the order of destinations of the platoon members. This approach enables a quick formation but imposes an overhead of platoon rebuilding, and consequently, additional fuel cost when platoon members leave. An alternative approach forms a platoon in the order of the destinations of its platoon members. This ordered approach incurs a comparatively higher formation time due to vehicles’ reorganization but does not lead to further overhead of platoon rebuilding. We investigate whether these ad-hoc formation and dissolution strategies can preserve the original fuel benefit of platooning, and which of the two ad-hoc formation strategies are more fuel-efficient. The experimental results show that the greedy formation of the platoon is more fuel-efficient for a multi-lane highway. The proposed prediction model provides 90.4% prediction accuracy for the greedy approach and 82.2% prediction accuracy for the ordered approach on average, for platoon sizes from two to six vehicles.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 2","pages":"Pages 161-173"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ad-hoc platoon formation and dissolution strategies for multi-lane highways\",\"authors\":\"Santa Maiti ,&nbsp;Stephan Winter ,&nbsp;Lars Kulik ,&nbsp;Sudeshna Sarkar\",\"doi\":\"10.1080/15472450.2021.1993212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Vehicle platooning</em>, a coordinated and controlled vehicle-following strategy, addresses the issue of high fuel consumption of heavy-duty vehicles. This research considers platoons that are formed on the fly in an ad-hoc manner. We investigate two types of ad-hoc platoon formation and corresponding platoon dissolution strategies. The first approach forms a platoon greedily without considering the order of destinations of the platoon members. This approach enables a quick formation but imposes an overhead of platoon rebuilding, and consequently, additional fuel cost when platoon members leave. An alternative approach forms a platoon in the order of the destinations of its platoon members. This ordered approach incurs a comparatively higher formation time due to vehicles’ reorganization but does not lead to further overhead of platoon rebuilding. We investigate whether these ad-hoc formation and dissolution strategies can preserve the original fuel benefit of platooning, and which of the two ad-hoc formation strategies are more fuel-efficient. The experimental results show that the greedy formation of the platoon is more fuel-efficient for a multi-lane highway. The proposed prediction model provides 90.4% prediction accuracy for the greedy approach and 82.2% prediction accuracy for the ordered approach on average, for platoon sizes from two to six vehicles.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 2\",\"pages\":\"Pages 161-173\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022003966\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022003966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 8

摘要

车辆排队是一种协调和控制的车辆跟随策略,解决了重型车辆的高油耗问题。这项研究考虑了以特定方式在飞行中形成的排。我们研究了两种类型的特设排的形成和相应的排解散策略。第一种方法贪婪地形成一个排,而不考虑排成员的目的地顺序。这种方法实现了快速编队,但增加了排重建的开销,从而在排成员离开时增加了燃料成本。另一种方法是按照排成员的目的地顺序形成一个排。由于车辆的重组,这种有序的方法产生了相对较高的编队时间,但不会导致车队重建的进一步开销。我们研究了这些特别编队和解散策略是否可以保留排成队的原始燃料效益,以及两种特别编队策略中哪一种更省油。实验结果表明,对于多车道公路,贪婪排的形式更省油。对于2至6辆车的车队规模,所提出的预测模型为贪婪方法提供了90.4%的预测精度,为有序方法提供了82.2%的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ad-hoc platoon formation and dissolution strategies for multi-lane highways

Vehicle platooning, a coordinated and controlled vehicle-following strategy, addresses the issue of high fuel consumption of heavy-duty vehicles. This research considers platoons that are formed on the fly in an ad-hoc manner. We investigate two types of ad-hoc platoon formation and corresponding platoon dissolution strategies. The first approach forms a platoon greedily without considering the order of destinations of the platoon members. This approach enables a quick formation but imposes an overhead of platoon rebuilding, and consequently, additional fuel cost when platoon members leave. An alternative approach forms a platoon in the order of the destinations of its platoon members. This ordered approach incurs a comparatively higher formation time due to vehicles’ reorganization but does not lead to further overhead of platoon rebuilding. We investigate whether these ad-hoc formation and dissolution strategies can preserve the original fuel benefit of platooning, and which of the two ad-hoc formation strategies are more fuel-efficient. The experimental results show that the greedy formation of the platoon is more fuel-efficient for a multi-lane highway. The proposed prediction model provides 90.4% prediction accuracy for the greedy approach and 82.2% prediction accuracy for the ordered approach on average, for platoon sizes from two to six vehicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1