Santa Maiti , Stephan Winter , Lars Kulik , Sudeshna Sarkar
{"title":"多车道高速公路的自组织组队与解散策略","authors":"Santa Maiti , Stephan Winter , Lars Kulik , Sudeshna Sarkar","doi":"10.1080/15472450.2021.1993212","DOIUrl":null,"url":null,"abstract":"<div><p><em>Vehicle platooning</em>, a coordinated and controlled vehicle-following strategy, addresses the issue of high fuel consumption of heavy-duty vehicles. This research considers platoons that are formed on the fly in an ad-hoc manner. We investigate two types of ad-hoc platoon formation and corresponding platoon dissolution strategies. The first approach forms a platoon greedily without considering the order of destinations of the platoon members. This approach enables a quick formation but imposes an overhead of platoon rebuilding, and consequently, additional fuel cost when platoon members leave. An alternative approach forms a platoon in the order of the destinations of its platoon members. This ordered approach incurs a comparatively higher formation time due to vehicles’ reorganization but does not lead to further overhead of platoon rebuilding. We investigate whether these ad-hoc formation and dissolution strategies can preserve the original fuel benefit of platooning, and which of the two ad-hoc formation strategies are more fuel-efficient. The experimental results show that the greedy formation of the platoon is more fuel-efficient for a multi-lane highway. The proposed prediction model provides 90.4% prediction accuracy for the greedy approach and 82.2% prediction accuracy for the ordered approach on average, for platoon sizes from two to six vehicles.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 2","pages":"Pages 161-173"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ad-hoc platoon formation and dissolution strategies for multi-lane highways\",\"authors\":\"Santa Maiti , Stephan Winter , Lars Kulik , Sudeshna Sarkar\",\"doi\":\"10.1080/15472450.2021.1993212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Vehicle platooning</em>, a coordinated and controlled vehicle-following strategy, addresses the issue of high fuel consumption of heavy-duty vehicles. This research considers platoons that are formed on the fly in an ad-hoc manner. We investigate two types of ad-hoc platoon formation and corresponding platoon dissolution strategies. The first approach forms a platoon greedily without considering the order of destinations of the platoon members. This approach enables a quick formation but imposes an overhead of platoon rebuilding, and consequently, additional fuel cost when platoon members leave. An alternative approach forms a platoon in the order of the destinations of its platoon members. This ordered approach incurs a comparatively higher formation time due to vehicles’ reorganization but does not lead to further overhead of platoon rebuilding. We investigate whether these ad-hoc formation and dissolution strategies can preserve the original fuel benefit of platooning, and which of the two ad-hoc formation strategies are more fuel-efficient. The experimental results show that the greedy formation of the platoon is more fuel-efficient for a multi-lane highway. The proposed prediction model provides 90.4% prediction accuracy for the greedy approach and 82.2% prediction accuracy for the ordered approach on average, for platoon sizes from two to six vehicles.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 2\",\"pages\":\"Pages 161-173\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022003966\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022003966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Ad-hoc platoon formation and dissolution strategies for multi-lane highways
Vehicle platooning, a coordinated and controlled vehicle-following strategy, addresses the issue of high fuel consumption of heavy-duty vehicles. This research considers platoons that are formed on the fly in an ad-hoc manner. We investigate two types of ad-hoc platoon formation and corresponding platoon dissolution strategies. The first approach forms a platoon greedily without considering the order of destinations of the platoon members. This approach enables a quick formation but imposes an overhead of platoon rebuilding, and consequently, additional fuel cost when platoon members leave. An alternative approach forms a platoon in the order of the destinations of its platoon members. This ordered approach incurs a comparatively higher formation time due to vehicles’ reorganization but does not lead to further overhead of platoon rebuilding. We investigate whether these ad-hoc formation and dissolution strategies can preserve the original fuel benefit of platooning, and which of the two ad-hoc formation strategies are more fuel-efficient. The experimental results show that the greedy formation of the platoon is more fuel-efficient for a multi-lane highway. The proposed prediction model provides 90.4% prediction accuracy for the greedy approach and 82.2% prediction accuracy for the ordered approach on average, for platoon sizes from two to six vehicles.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.